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ABSTRACT

New records of sea-ice edge in a portion of the 
Amundsen-Bellingshausen  Sea  (ABS),  West 
Antarctica, have been developed using satellite-based 
remote  sensing  records  of  sea  ice,  ice-core 
glaciochemistry and artificial neural networks (ANNs). 
ANNs exploit the nonlinear relationship between sea-
ice  conditions  and  the  chemical  composition  of 
snowfall on the nearby ice sheet, as recorded in high-
resolution ice core records.  Satellite remote sensing 
of  sea  ice  provides  calibration  data  for  the  period 
1973 to present.  ANNs are trained to predict sea-ice 
edge from ice core records developed under the US 
ITASE  program  and  available  up  to  2001.   The 
relatively  small  ANN training  dataset  resulting  from 
the short overlap between sea ice observations and 
ice core data (less than 30 years) was expanded by 
adding small amounts of noise to the ice core data.

Results from a 110-year record of sea ice edge 
(28 years of observations and 82 years of ANN-based 
reconstruction) predominantly show long-term stability 
in this section of the ABS (140-115 °W) with no trend 
over  the  full  record  and only  modest  decadal-scale 
changes.   Spectral  analysis  shows  clear  periodic 
behavior at ~8.5 and 3.3 years,  suggesting that the 
Antarctic  Circumpolar  Wave  has  been  active 
throughout this period.

1. INTRODUCTION

1.1 Overview
Comprehensive,  spatially  and  temporally 

continuous records of Antarctic sea ice are limited to 
the  period  of  satellite-based  remote  sensing  (1973 
onward).   Fortunately,  sea-ice  conditions  are  a 
significant influence on ice-core chemistry, making the 
numerous  high-resolution  ice-core  records  on  the 
adjacent  West  Antarctic  ice  sheet  highly  useful  as 
proxies for sea ice.  Unfortunately, sea ice is not the 
only influence and there is generally no simple linear 
relationship  between  sea-  ice  conditions  and 
concentrations  (or  fluxes)  of  ice-core  major  ion 
chemistry.  Artificial neural networks (ANNs) provide a 
solution to this problem through their ability to develop 
nonlinear relationships between predictors and targets 
(i.e., ice cores and sea ice, respectively).

2. DATA

2.1 Sea ice

We use sea-ice data from the monthly HadISST 
dataset  (Rayner et al., 2003).  Although this dataset 
extends into the 19th century,  only the period since 
1973 is based fully on observations year-round.  Prior 
to that, it is essentially a climatology supplemented by 
occasional  limited observations.   HadISST data are 
global at 1 degree resolution with sea ice measured 
as  percentage  of  grid  box  covered,  i.e.,  gridded 
concentration.  Antarctic sea-ice edge was derived by 

identifying  the  northernmost  grid  box  at  each 
longitude  with  a  concentration  greater  than  15%. 
Annual sea-ice edge is the average of monthly values.

2.2 Ice-core glaciochemistry

The ice-core data used here are a subset of the 
many  high-resolution  cores  now  available  in  West 
Antarctica (e.g., Dixon et al., 2004). Annual averages 
of  major  ion  chemistry  were  calculated  from  the 
original  subannually  sampled  data  available  at  the 
National Snow and Ice Data Center (NSIDC).  Years 
with less than two samples were marked as missing. 
To better  discriminate sources,  data were  also split 
into seasalt and nonseasalt fractions using the most 
conservative seasalt species in each sample and the 
relative ratios of these ions in seawater.

For  our  multisite  reconstructions,  we  chose the 
newest (i.e., most recent) sites with complete records 
extending into the late 19th century.   These criteria 
resulted  in  eight  sites  (Figure  1)  covering  1890  to 
2000, i.e., a 28-year overlap with the sea ice record. 
All  of  these  records  were  developed  under  the  US 
ITASE program after recovery in the 2000/2001 field 
season (Mayewski and Dixon, 2005).

Although  nothing  mathematical  precludes  using 
ANNs to predict sea ice conditions anywhere around 
the Antarctic continent, we thought it best to focus on 
regions close by the ice core data.  Furthermore, we 
preferred  to  use  a  region  free  of  trends  during  the 
calibration  period  to  avoid  bias  and  other  potential 
problems  in  the  reconstructions.   That  is,  the 
calibration  data  need  to  be  as  representative  as 
possible  of  the  full  reconstruction  period.   This 
criterion  eliminated  the  region  nearest  the  western 
Antarctic Peninsula due to the significant trend in sea-
ice edge previously identifed there.   Analysis  of  the 
full  Ross-Amundsen-Bellingshausen  Seas  (ABS) 
showed the longitude range 140-115 °W to be free of 
statistically  significant  trends  during  the  calibration 
period (Figure 2).

3. METHODS

3.1 Linear correlations: ice cores to sea ice

That sea ice conditions are but one influence on 
ice-core chemistry  does not  preclude there being  a 
useful linear relationship between the two, particularly 
for chemical species with limited sources.  A number 
of studies have successfully used this approach in the 
past for atmospheric circulation  (e.g., Reusch et al., 
1999;  Kreutz et  al.,  2000) as well  as sea ice  (e.g., 
Curran et al., 2003; Abram et al., 2010). To test this 
hypothesis  with  our  data,  a  series  of  linear 
correlations was done between the ice core chemistry 
data and the sea-ice edge data during the overlapping 
calibration period (1973-2000).  With 14 variables per 
site  (seven  directly  measured  species  and  seven 
species derived from the seasalt-related species) and 
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eight sites, a total of  112 correlations were needed. 
Of these, only two had statistically significant r2 values 
greater than 0.25, SO4

2- and nssSO4
2- at site 00-1.  Six 

of  the  14  chemistry  variables  (Cl-,  Mg2+,  Na+ and 
nonseasalt  fractions  of  each)  had  no  statistically 
significant correlations.

The  linear  relationship  was  further  tested  with 
stepwise  linear regression of  the individual  ice core 
chemistry species with the sea-ice edge data, i.e., a 
total  of  14 multivariable linear models.   In this test, 
sites are added to the regression individually and kept 
or  discarded  based  on  whether  they  improve  or 
reduce  the  quality  of  the  regression.   Of  the  14 
models  tested,  seven  found  no  statistically  useful 
relationship  (Cl-,  K+,  Mg2+,  Na+,  nssCl-,  nssMg2+, 
ssNa+),  six found a relationship with  one site (Ca2+, 
SO4

2-,  nssCa2+,  nssK+,  nssNa+,  nssSO4
2-),  and  one 

model found a relationship for two sites and NO3
-.  In 

agreement  with  the  basic  linear  regression  results, 
even  models  indicating  a  relationship  between  ice-
core chemistry at one or more sites and sea-ice edge 
were not predictively useful.

In addition to establishing a lack of useful linear 
relationships,  the above tests also show that all  ice 
core sites are effectively equal with respect to linear 
skill.  That is, there do not appear to be any sites that 
would  make noticeably  better  predictors  versus  the 
rest of the ice cores.  In practical terms, this means 
any ice core site is as good as any other for predicting 
sea ice edge and we don’t lose anything by focusing 
on the sites with  the longest  and/or  most  complete 
data.   This  is  further  supported  by  the  lack  of 
statistically significant single and multiple regressions 
within the ice-core datasets, i.e., correlations between 
ice cores.

3.2 Artificial Neural Networks

At  the  simplest  level,  artificial  neural  networks 
(ANNs)  are  a  computer-based  problem  solving  tool 
inspired  by the  original,  biological  neural  network  – 
the brain.   Because of  their ability to generate non-
linear mappings during training, ANNs are particularly 
well-suited to complex,  real-world  problems such as 
understanding  climate  (Elsner  and  Tsonis,  1992; 
Tarassenko,  1998).   Examples  from  the 
meteorological  literature  include  an  improved 
understanding of controls on precipitation in southern 
Mexico  (Hewitson  and  Crane,  1994),  prediction  of 
summer rainfall over South Africa  (Hastenrath et al., 
1995) and  northeast  Brazil  (Hastenrath  and 
Greischar, 1993), and extreme event analysis in the 
Texas/Mexico  border  region  (Cavazos,  1999).   We 
have  used  the  MATLAB Neural  Network  Toolbox 
(Demuth and Beale, 2000).

Multilayer  feed-forward  ANNs  were  chosen  to 
follow  our  previous  ANN  experiences  with  climate 
downscaling  and  in   the  literature  (e.g.,  Cavazos, 
1999).   These  ANNs  consist  of  a  large  number  of 
highly  interconnected,  simple  processing  nodes 
(a.k.a.  neurons)  organized  into  three  layers.   The 
input layer serves to receive input data and is sized 
according  to  the  number  of  input  predictors  being 
used,  with  one  node  for  each  input  variable.   The 
hidden layer consists of nodes with inputs from each 
node in the input layer.  Its size was varied to test this 
key parameter of ANN design.  The number of hidden 
nodes is problem dependent and is a significant factor 
in how well the ANN works.  The output layer receives 
intermediate  results  from  the  hidden  layer  and 
translates them to the desired output format and has 
one node for predicted sea ice edge.
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Figure 1.  Location map for ice-core sites with U.S. 
ITASE identifiers.  Black lines at 115° W and 140° 
W  indicate  longitude  range  of  sea  ice-edge  data 
being predicted by ANNs.

Figure 2.  Observed sea-ice edge trends in the various 
parts  of  the  Amundsen-Bellingshausen  Sea  (ABS). 
Vertical axis unit is degrees latitude.



ANNs need to be taught to produce the desired 
outputs  (sea-ice  observations)  from the  inputs  (ice-
core data) before they can be used for predictions, a 
task done iteratively in three main phases:  training, 
testing and validation.  The training phase adjusts the 
connection weights using an optimization function that 
reduces the error in the network’s results. The training 
error is calculated by comparing the network’s output 
prediction to the sea-ice observations.   Weights are 
adjusted based on the cumulative error from one pass 
through the complete training set (70% of the data). 
Testing uses a second subset (20%) of  the data to 
evaluate training performance.  Validation is used to 
avoid  overfitting  the  training  data  and  tests  the 
network with data distinct from the training and testing 
samples  (10%).   The  cycle  then  repeats  until  the 
desired  output  is  achieved  (or  the  error  cannot  be 
further reduced).

Rather  than  use  just  one  particular  ANN,  or 
perhaps a few,  for  the long-term reconstruction,  we 
opted to follow the model now often seen in numerical 
weather prediction and climate modeling, i.e., produce 
a  large  number  of  predictions  (an  ensemble)  and 
average them to create the forecast (reconstruction). 
This approach has a further advantage of  providing 
additional statistical data that can be used to evaluate 
confidence  in  the  reconstruction.   In  this  case,  an 
ensemble of 50 independently trained ANNs is used 
to create the predictions of past sea-ice edge.

4. RESULTS

4.1 Long-term Reconstructions

Figure 3 shows reconstructed sea-ice edge from 
two  “experiments”  based  on  two  different  ice-core 
species,  Cl- and  ssNa+,  both  of  which  have  been 
linked to sea-ice characteristics in other studies (e.g., 
Aristarain  et  al.,  2004).   Apart  from  the  ice-core 
predictor, each experiment was essentially the same 
and used 50-member ANN ensembles to create the 
ensemble averages shown.   Apart  from the earliest 
section  of  the  record  and the  period  ca.  1920,  the 
different predictors produced very similar estimates of 
past sea-ice edge.
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Figure  3.   Sea-ice  reconstructions  for  1890-1972 
using Cl- (blue) and ssNa+ (red) from sites in Figure
1.  HadISST (Rayner et al., 2003) data in gray.



With  respect  to  basic  analyses,  interannual 
variability  is  (qualitatively)  somewhat  more 
pronounced  through  much  of  the  reconstructions. 
The positive anomaly ca. 1910 is larger (by 0.5°) than 
all but the 1974 value in the  observed record.  There 
is  also  a  possible  trend  in  the  annually-averaged 
minimum  extent,  though  more  extreme  negative 
anomalies do appear in the observational period.

4.2 Spectral Analysis: Antarctic Circumpolar  
Wave?

Prompted by the visual appearance of a possible 
periodicity,  spectral  analysis  using  a  range  of 
windowing functions (e.g.,  split  cosine bell,  cosineZ, 
Welch)  identified  spectral  peaks  in  both 
reconstructions  around  8.5  and  3.3  years.   These 
peaks are significant versus both red and white noise 
critical  values.   These  are  relatively  close  to  the 
periods attributed to the Antarctic Circumpolar Wave 
(White  and  Peterson,  1996).   If  an  actual 
manifestation of the ACW, and not an artifiact of the 
ANN training process, then this is evidence of at least 
a  local  persistence of  the ACW throughout  the 20th 

century, a topic of some controversy.

5. FUTURE WORK

Additional  work  will  be  proceeding  along  a 
number of tracks with the goals of expanding spatial 

coverage  and  length  of  record,  improving 
understanding  of  the  methodology’s  strengths  and 
weaknesses, adding robust confidence estimates for 
the new time series, and integrating new results with 
existing reconstructions from the literature.

6. SUMMARY

Through  advanced  usage  of  ANNs,  extended 
reconstructions  of  ABS  sea-ice  edge  have  been 
developed from West Antarctic ice cores.  The overall 
picture  is  of  relative  stability  with  interannual  and 
decadal  variability  not  strongly  different  from  the 
modern  observational  record.   Although  awaiting 
confirmation,  it  appears  that  the  ACW  has  been 
influencing this region throughout the 20th century.
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