Cambridge, UK Hryniw et al.

Background

Theory

Experimenta Information

Results

Conclusions

The Antarctic Radiosonde Network: Optimal Locations for Weather Observation

The 10th Antarctic Meteorological Observation, Modeling, & Forecasting Workshop, 2015

Natalia Hryniw¹, Gregory J. Hakim¹, Guillaume S. Mauger², Karin A. Bumbaco³

¹Department of Atmospheric Sciences, University of Washington ²Climate Impacts Group, University of Washington ³Joint Institute for the Study of Atmosphere and Ocean, University of Washington

June 16, 2015

Challenges for Radiosondes in Antarctica

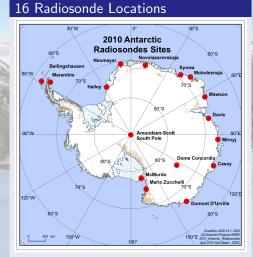
Cambridge, UK Hryniw et al.

Background

- Theory
- Experimenta Information
- Results
- Conclusions

- Current network is sparse is coverage sufficient?
- Radiosondes serve many purposes simultaneously NWP, scientific studies, etc.
- Getting data can be difficult
- Given limited resources and many objectives, where should radiosondes be located?

Current Radiosonde Network


Cambridge, UK Hryniw et al.

Background

Theory

Experimenta Information Results

Conclusions

Can the information by these radiosondes be recovered by a handful of obs at other locations?

John Cassano "Climate of Extremes" chapter from Antarctica: Global Science from a Frozen Continent 2013/Matt Lazzara AMRC

Background

Theory

Experimental Information Results Conclusions

Optimizing for Radiosondes Algorithmic Approach

Cambridge, UK Hryniw et al.

Background

Theory

- Experimenta Information
- Results
- Conclusions

- 1 Choose metric that describes the system and obtain a reference distribution for the metric.
- 2 Calculate the changes in the measure (total variance) for all possible new measurement locations.
- 3 The optimal measurement is one that maximizes the measure.
- **4** Incorporate the optimal measurement, and update the metric and state statistics appropriately.
- **5** Repeat steps 2-4 until desired number of stations are reached.

Optimal Network Design Theoretical Background

Cambridge, UK Hryniw et al.

Background

Theory

Experimental Information Results Conclusions

Multivariate Variance Reduction

Optimal location is the one that maximizes the trace of

$$\delta \boldsymbol{\Sigma}_{J} = D \mathbf{J}^{\mathrm{T}} (\mathbf{A}' - \mathbf{A}) D \mathbf{J}$$

Using the Ensemble Kalman Filter:

$$\delta \boldsymbol{\Sigma}_{J} = -\frac{1}{E} \left[\boldsymbol{D} \mathbf{J}^{\mathrm{T}} \mathbf{A} \mathbf{H}^{\mathrm{T}} \right] \left[\boldsymbol{D} \mathbf{J}^{\mathrm{T}} \mathbf{A} \mathbf{H}^{\mathrm{T}} \right]^{\mathrm{T}}$$
$$\boldsymbol{D} \mathbf{J}^{\mathrm{T}} \mathbf{A} \mathbf{H}^{\mathrm{T}} = \{ \delta \mathbf{J} (\mathbf{H} \delta \mathbf{x})^{\mathrm{T}} \}$$

Hryniw and Hakim 2015

J: mxn metric matrix D: Jacobian operator Σ_{J} : metric covariance matrix A: kxn prior state covariance matrix A': kxn posterior state covariance matrix H: observation operator $\delta J, \delta x$: metric and state perturbations from ensemble mean

- Optimizes for many metrics simultaneously
- No explicit calculation of covariances

Experimental Setup Methodology

Experimenta Information

Results

Conclusions

- Use a Monte Carlo bootstrap approach (1000 iterations)
 - Draw random ensemble members (250) from the data to calculate metric and state statistics
- Use the square root form of the Ensemble Kalman Filter (EnKF) to calculate impact
- Square root EnKF allows sequential assimilation station
 1 is chosen, statistics updated, then station 2 is chosen conditional on station

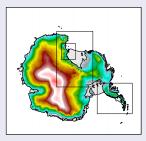
 $\delta \mathbf{x}_{n+1}^{'} = \delta \mathbf{x}_{n}^{'} - \mathbf{K} \mathbf{H} \delta \mathbf{x}_{n}^{'}$ perturbation update

Experimental Setup Data

Cambridge, UK Hryniw et al.

Background

Theory


Experimental Information

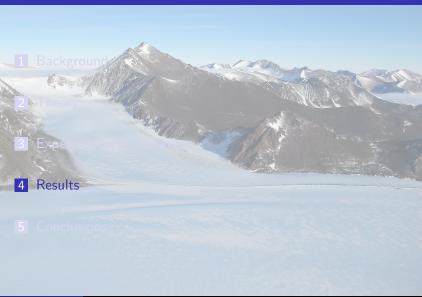
Results

Conclusions

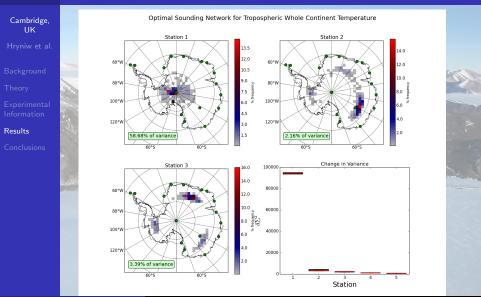
- Archived forecasts from the Antarctic Mesoscale Prediction System (AMPS) (Powers et al. 2011)
- Temperature data on the 15km full continental grid
- Metric is temperature at every 20th gridpoint horizontally and every 50hPa from 600hPa to 50 hPa
- Every 10th gridpoint is considered for an observation
- Data is at 00Z from Oct 1 2008
 Sept 31 2012

AMPS Grids

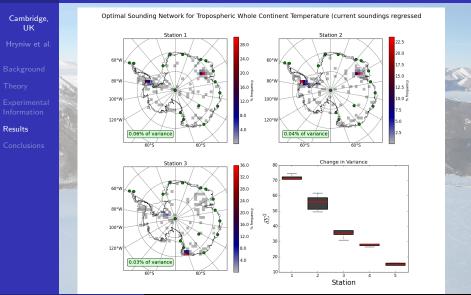
June 16 2015


Background

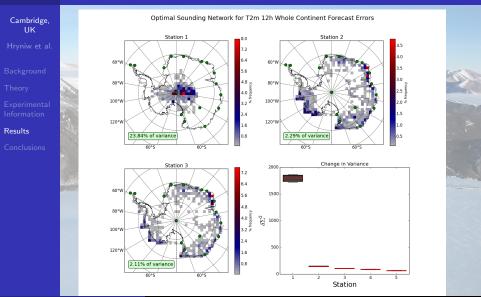
Theory

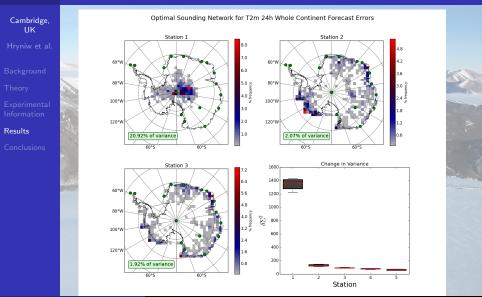

Experimenta Information

Results


Conclusions

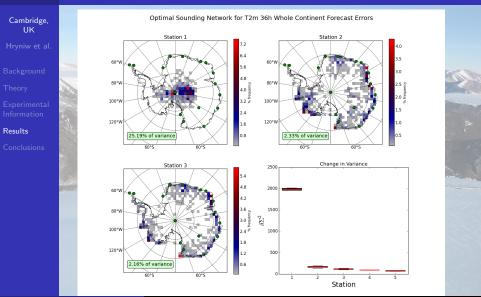
Results Optimal Network for Monitoring 00Z Tropospheric Temperature


Results Optimal Network for Monitoring 00Z Tropospheric Temperature, without influence of current radiosondes

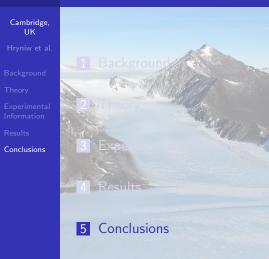

June 16 2015

Cambridge, UK

Results Optimal Network for Reducing 12hr Surface Temperature Forecast Errors


Results Optimal Network for Reducing 24hr Surface Temperature Forecast Errors

June 16 2015


Cambridge, UK

Results Optimal Network for Reducing 36hr Surface Temperature Forecast Errors

June 16 2015

Cambridge, UK

Conclusions and Future Work

Cambridge, UK Hryniw et al.

Background

Theory

Experimenta Information

Results

Conclusions

Conclusions

- Current radiosonde network explains much of tropospheric variance
- However some gaps exist and current stations could be in better locations
- Coastal locations seem more important for forecasting, and interior for observation

Next Steps

- OSEs with currently assimilated radiosondes in AMPS
- Optimal locations for full tropospheric forecast errors
- Optimize for other fields such as geopotential height and wind speed

Acknowledgements

- Cambridge, UK Hryniw et al.
- Баскgroun
- Theory
- Experimental Information
- Results
- Conclusions

Acknowledgements

Jordan Powers and Kevin Manning (NCAR)
 Matthew Lazzara (AMRC)
 Funded by NSF Grant 1043090

Questions?

- Cambridge, UK Hryniw et al.
- Background
- Theory
- Experimenta Information
- Results
- Conclusions

- Hryniw, Natalia and Gregory J. Hakim. "Multivariate Approaches to Optimal Network Design for Geophysical Fields", Monthly Weather Review, submitted. (2015)
- Powers, Jordan G., et al. "A decade of Antarctic science support through AMPS." Bulletin of the American Meteorological Society 93.11 (2012): 1699-1712.
- Walton, David WH, ed. Antarctica: global science from a frozen continent. Cambridge University Press, 2013.