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Challenges for Radiosondes in Antarctica

Current network is sparse - is coverage sufficient?

Radiosondes serve many purposes simultaneously - NWP,
scientific studies, etc.

Getting data can be difficult

Given limited resources and many objectives, where should
radiosondes be located?

June 16 2015 Cambridge, UK 3 / 20



Cambridge,
UK

Hryniw et al.

Background

Theory

Experimental
Information

Results

Conclusions

Current Radiosonde Network

16 Radiosonde Locations

Can the
information by
these radiosondes
be recovered by a
handful of obs at
other locations?

John Cassano “Climate of Extremes” chapter from Antarctica: Global Science from a Frozen Continent
2013/Matt Lazzara AMRC
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Optimizing for Radiosondes
Algorithmic Approach

1 Choose metric that describes the system and obtain a
reference distribution for the metric.

2 Calculate the changes in the measure (total variance) for
all possible new measurement locations.

3 The optimal measurement is one that maximizes the
measure.

4 Incorporate the optimal measurement, and update the
metric and state statistics appropriately.

5 Repeat steps 2-4 until desired number of stations are
reached.
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Optimal Network Design
Theoretical Background

Multivariate Variance Reduction

Optimal location is the one that maximizes
the trace of

δΣJ = DJT(A
′
− A)DJ

Using the Ensemble Kalman Filter:

δΣJ = − 1

E

[
DJTAHT

] [
DJTAHT

]T
DJTAHT = {δJ(Hδx)T}

Hryniw and Hakim 2015

J: mxn metric matrix
D: Jacobian operator
ΣJ : metric covariance matrix
A: kxn prior state covariance
matrix

A
′
: kxn posterior state

covariance matrix
H: observation operator
δJ, δx: metric and state
perturbations from ensemble
mean

Optimizes for
many metrics
simultaneously

No explicit
calculation of
covariances
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Experimental Setup
Methodology

Use a Monte Carlo bootstrap approach (1000 iterations)

Draw random ensemble members (250) from the data to
calculate metric and state statistics

Use the square root form of the Ensemble Kalman Filter
(EnKF) to calculate impact

Square root EnKF allows sequential assimilation - station
1 is chosen, statistics updated, then station 2 is chosen
conditional on station 1

δx
′
n+1 = δx

′
n −KHδx

′
n perturbation update
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Experimental Setup
Data

Archived forecasts from the
Antarctic Mesoscale Prediction
System (AMPS) (Powers et al.
2011)

Temperature data on the 15km
full continental grid

Metric is temperature at every
20th gridpoint horizontally and
every 50hPa from 600hPa to 50
hPa

Every 10th gridpoint is
considered for an observation

Data is at 00Z from Oct 1 2008
- Sept 31 2012

AMPS Grids
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Results
Optimal Network for Monitoring 00Z Tropospheric Temperature
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Results
Optimal Network for Monitoring 00Z Tropospheric Temperature, without
influence of current radiosondes
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Results
Optimal Network for Reducing 12hr Surface Temperature Forecast Errors
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Results
Optimal Network for Reducing 24hr Surface Temperature Forecast Errors
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Results
Optimal Network for Reducing 36hr Surface Temperature Forecast Errors
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Conclusions and Future Work

Conclusions

Current radiosonde network explains much of tropospheric
variance

However some gaps exist and current stations could be in
better locations

Coastal locations seem more important for forecasting,
and interior for observation

Next Steps

OSEs with currently assimilated radiosondes in AMPS

Optimal locations for full tropospheric forecast errors

Optimize for other fields such as geopotential height and
wind speed
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