

POLAR SCIENCE FOR PLANET EARTH

The Microphysics of Clouds over the Antarctic Peninsula Observation & Modelling

Constantino Listowski & Tom Lachlan-Cope

British Antarctic Survey, Climate Processes, Cambridge, UK

10th Antarctic Meteorological Observation, Modeling & Forecasting Workshop Cambridge, United Kingdom. June 17-19, 2015

General Context

Clouds are collection of liquid droplets or/and water ice crystals (hydrometeors) that...

- ... contribute to the water cycle **by redistributing water vapour** (condensation-advection-sedimentation-evaporation)
- ... affect the ice mass balance at the surface through precipitation (albedo)

... affect the **energy budget** by reflecting shortwave and longwave radiations (temperatures)

... Impact safety of aircraft and ground operations (visibility, icing, precipitation)

From Global Modelling studies:

Changes in Local/regional cloud properties can have a global impact (Gordon et al. 2000)

Change in Antarctic clouds properties can **affect regions at southern mid-latitudes (and up to the Northern hemisphere)** by impacting the North-South temperature gradient (Lubin et al. 1998).

POLAR SCIENCE

FOR PLANET EARTH

British Antarctic Survey

Context: Antarctica

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Context: Antarctica Peninsula

WEST / EAST

West: Maritime (cyclonic) influence East: Continental influence (prevailing easterlies)

Western surface temperatures are **3-5°C warmer** than eastern ones. (Morris and Vaughan, 2003)

More Precipitations (mm water/year) West (1260 \pm 390) than East (310 \pm 80). (Peel, 1992a)

Credit: BAS

On coastal regions: precipitations produced by **adiabtic cooling of air** rising up the **steep topography** or brought by **declining depressions** (small intensity) – King&Turner, 1997

Using Polar WRF (v3.5.1) (Hines and Bromwich 2008)

King et al. 2015 –Validation of surface summertime energy budget (Larsen C shelf – East of AP) (AWS14 & Camp: 9 Jan – 8 Feb2011)

Deficiencies in cloud microphysics modelling rather than in cloud cover would Explain >0 SW bias and <0 LW bias in high resolution models (AMPS, Met-Office, RACMO2) (also emphasized in reviews on Antarctic clouds: Lachlan-Cope, 2010; Bromwich et al. 2013)

POLAR SCIENCE

FOR PLANET EARTH

Microphysical schemes

Vocabulary

Non-precipitable: Liquid droplets (liquid)/Ice crystals (ice) **Precipitable**: rain drops/snow/graupel

Single-moment (SM): predicts mass (kg/kg)

Double-moment (DM): predicts mass AND number density (#/kg) – more realistic behavior

WRF single moment 5 (**WSM5**) – Default scheme in (Polar) WRF <u>used in Antarctic Mesoscale Prediction System</u> SM for liquid droplets, rain, ice, snow

WRF Double moment 6 (**WDM6**) – "Upgrade" of default scheme wsm5. DM for liquid and predicts Cloud Condensation Nuclei (CCN)

Morrison scheme (**MDM**) – DM for all icy hydrometeors and rain / SM for liquid droplets used in Arctic System Reanalysis

Thomson scheme **(Thom) –** DM for ice, with state of the art parameterization for snow (fractal-like snow)

polar science

FOR PLANET EARTH

Monthly radiation biases (W/m2) over Jan 2011

Antarctic Survey natural environment research council

2010 & 2011 Campaigns

"First time clouds have been directly sampled by aircraft in Antarctica since 2 flights in November 1980 [near the Ross ice shelf]described in Saxena and Ruggiero (1990)..." (Grosvenor et al., 2012)

Credit: Russ Ladkin (BAS)

Cloud probe 2D imaging probe (25-1550μm) Aerosol spectrometer (0.5-50 μm) Liquid water content probe (0.01-3.0 g/m3)

Flights tracks

Flights 2011 11Jan – 6 Feb 2011 (11 flights)

Flights 2010 3Feb – 4March 2010 (11 flights)

Modelling 1st Jan – 9th Feb 2011

Longitude

Altitudes of Flights

Zonal distribution of liquid/ice phase in model

In the entire high resolution domain

WSM5/WDM6 form less liquid mass and more ice mass than Morrison/Thomson

Zonal distribution of Liquid Water Content (LWC, g/kg) where cloud forms

Zonal distribution of ice and snow (g/kg) where ice cloud forms

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Liquid Phase & Ice phase where clouds form, on Flight tracks only

			mixed phase		
	Liquid (g/kg)	lce (g/kg)	Liquid (g/kg)	lce (g/kg)	
WSM5	0.065	0.017	0.065	0.012	
WDM6	0.059	0.017	0.059	0.0065	
Morrison	0.129	0.006	0.129	0.004	
Thomson	0.080	0.014	0.075	0.018	
Flights (2011)	0.15	0.005	0.17	0.004	

POLAR SCIENCE

FOR PLANET EARTH

Ice particles in all observed clouds : 2010-2011 flights

Primary/Secondary ice production? (PIP or SIP?)

POLAR SCIENCE FOR PLANET EARTH

British Antarctic Survey

T (C)

POLAR SCIENCE FOR PLANET EARTH

Ice Microphysics: ice growth rate

WSM5 form ice faster and depletes vapour faster so that not enough liquid can form

British Antarctic Survey

Mapping of average liquid water column density over 11-21Jan 2011

Morrison scheme

0.0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 Kg/m2

0.0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 Kg/m2

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

POLAR SCIENCE FOR PLANET EARTH

WSM5 scheme

Conclusion

Morrison scheme is the scheme which better agrees with flight data Both for liquid and ice phases over the AP during January 2011.

Morrison scheme, then Thomson, then WSM5/WDM6 produce The more liquid and less ice (in that order) over the entire domain

Morrison might be the best candidate to lower SW/LW biases (East. However: West?)

WSM5 & WDM6 behaves in very similar ways (nor particular improvements)

WSM5 & WDM6 ice growth rate are much larger than Morrison's and Thomson's (rely on strong hypothesis of Ni propto qi^3/4 – not realisitc).

No Particular West/East differences in microphysical properties of clouds LWC, ice, and droplet number (not shown) from data on the two sides of AP. Although **more SIP West of AP and below 2km, than East of AP. More PIP East of AP.**

Both **primary and secondary ice production peaks appear in data** Nice=f(T) with values up to 10 #/g. (Morrion & Thomson do include SIP, not WSM5/WDM6)

None of current parameterization represent the ice data (including the most recent DeMott et al. 2010 which tends to overestimate IN –not shown) However there is a possibility to build a new parameterization (would it be representative?)

Extra slides

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

NATURAL ENVIRONMENT RESEARCH COUNCIL

E FOR PLANET EARTH

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

POLAR SCIENCE FOR PLANET EARTH

2010 flights

POLAR SCIENCE FOR PLANET EARTH

NATURAL ENVIRONMENT RESEARCH COUNCIL

Aws14 - snow

Aws14 - ice

POLAR SCIENCE FOR PLANET EARTH

Liquid Phase & Ice phase in Clouds on Flight tracks only

	Liquid (g/kg)	lce (g/kg)	mixed phase		Phase	Mixed
			Liquid (g/kg)	lce (g/kg)	ratio (Liq/Ice)	Phase Ratio
WSM5	0.065	0.017	0.065	0.012	3.8	5.4
WDM6	0.059	0.017	0.059	0.0065	3.5	9.1
Morrison	0.129	0.006	0.129	0.004	21.5	32.2
Thomson	0.080	0.014	0.075	0.018	5.7	4.2
Flights (2011)	0.15	0.005	0.17	0.004	30	42.5

POLAR SCIENCE

FOR PLANET EARTH

