THE NCAR-OSU YOPP-SH DATA IMPACT STUDY: UPDATE

Jordan G. Powers1, Kevin W. Manning1, and David H. Bromwich2

1Mesoscale and Microscale Meteorology Laboratory
National Center for Atmospheric Research
Boulder, Colorado, USA

2Department of Geography and Byrd Polar and Climate Research Center
The Ohio State University
Columbus, Ohio, USA

14th Workshop on Antarctic Meteorology and Climate
Charleston, South Carolina, USA
June 2019
Background

• **WMO Polar Prediction Project (PPP) (2013–2022)**
 – Goal: Promote research toward improved environmental prediction for the polar regions

• **YOPP Activity: YOPP–Southern Hemisphere (YOPP-SH)**
 – Focus: Observation & prediction in the high southern latitudes
 – Special Observing Period (SOP): November 2018–February 2019
 - ✓ Extra radiosondes
 - ✓ Enhanced surface AWS platforms
 - ✓ Drifting buoys
 - ✓ Ship obs: Oceanic, atmospheric
YOPP-SH SOP Data Impact Study

• Methodology: Conduct Model Forecast Experiments Adding Observations and Varying Data Assimilation Approaches

1) Add YOPP-SH SOP soundings in model initialization

Do the YOPP-SH obs improve the forecasts significantly?

2) Test new data assimilation (DA) methods for AMPS

Can different DA approaches improve polar prediction in AMPS?

• Framework: AMPS WRF Domains
 – 24-km (Southern Ocean) & 8-km (Antarctica) grids
Forecast Setups: Observation Sets

Standard Observations for AMPS WRF Forecasts

- Surface AWS and station reports (METAR, SYNOP, etc)
- Radiosondes
- Ships, buoys, aircraft
- Satellite measurements: Winds, temps, etc.
- GPSRO

Observation Sets for Experiments

1) STD Expts: Standard AMPS obs

2) STD + SOP Expts: Standard AMPS obs + SOP soundings

Issue: Identification of the extra/non-regular soundings attributable to the SOP
Extra YOPP-SH Soundings

Thanks to: Steve Colwell, BAS!

<table>
<thead>
<tr>
<th>Site</th>
<th>Launches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aboa</td>
<td>35</td>
</tr>
<tr>
<td>Agulhas II</td>
<td>15</td>
</tr>
<tr>
<td>Almirante Maximiano</td>
<td>20</td>
</tr>
<tr>
<td>Casey</td>
<td>91</td>
</tr>
<tr>
<td>Concordia</td>
<td>120</td>
</tr>
<tr>
<td>Davis</td>
<td>167</td>
</tr>
<tr>
<td>Dumont D'Urville</td>
<td>191</td>
</tr>
<tr>
<td>Escudero</td>
<td>86</td>
</tr>
<tr>
<td>Halley</td>
<td>63</td>
</tr>
<tr>
<td>Jang-Bogo</td>
<td>86</td>
</tr>
<tr>
<td>King Sejong</td>
<td>101</td>
</tr>
<tr>
<td>Mario Zucchelli</td>
<td>74</td>
</tr>
<tr>
<td>Macquarie</td>
<td>57</td>
</tr>
<tr>
<td>Mary Arctica</td>
<td>1</td>
</tr>
<tr>
<td>Mary Celeste*</td>
<td>21</td>
</tr>
<tr>
<td>Mawson</td>
<td>61</td>
</tr>
<tr>
<td>Mirnyj</td>
<td>93</td>
</tr>
<tr>
<td>Neumayer</td>
<td>257</td>
</tr>
<tr>
<td>Polarstern</td>
<td>118</td>
</tr>
<tr>
<td>Rothera</td>
<td>26</td>
</tr>
<tr>
<td>Shirase</td>
<td>20</td>
</tr>
<tr>
<td>Syowa</td>
<td>213</td>
</tr>
<tr>
<td>WAIS</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>1945</td>
</tr>
</tbody>
</table>

Not included: Dome Fuji

* = WDK38HS
Observation Acquisition: AMPS Data Sources During SOP

i) GTS
 – AMPS regular, real-time standard obs ingest source

ii) NCEP BUFR
 – BUFR= Binary Universal Form for the Representation of met data
 – Not QC’d
 – Sounding data: Full vertical resolution

iii) NCEP GFS PrepBUFR
 – Prepared BUFR: NCEP processed & QC’d BUFR
 – Sounding data: Reduced vertical resolution

iv) NCEP GDAS PrepBUFR
 – Data from NCEP’s Global Data Assimilation System
 – GDAS= DA system used by NCEP for GFS initialization
 – Sounding data: Reduced vertical res
 – Later cutoff time
YOPP-SH SOP Sonde Data Monitored for AMPS

- SOP Sonde AMPS Monitoring Page

www2.mmm.ucar.edu/rt/amps/status/prepbufr_raob_accounting.html

SOP Sonde Sites/Platforms

NB: Not all sites launched through the duration of the SOP.
Ex: Radiosonde Data – 15 Jan 2019

Reports Received

<table>
<thead>
<tr>
<th>UTC</th>
<th>Neumayer</th>
<th>Scott</th>
<th>Halley</th>
<th>Frei</th>
<th>Rothera</th>
<th>Syowa</th>
<th>Mawson</th>
<th>Davis</th>
<th>Zhongshan</th>
<th>Mirnyj</th>
<th>Concordia</th>
<th>Dumont</th>
<th>Zucchelli</th>
<th>McMurdo</th>
<th>Macquarie</th>
<th>Polarstern</th>
<th>WDK38HS</th>
<th>WAIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

- ○ ○: Source of data from NCEP
- ○: Report in low-level BUFR files but not in PREPBUFR files
- ●: Report in GDAS PREPBUFR file but not in GFS PREPBUFR file
WRF FORECAST EXPERIMENTS

• Period Forecasts
 – 72-h forecasts initialized 0000 & 1200 UTC each day
 15–30 November 2018 (spring)
 1–15 January 2019 (mid-summer)
 1–15 February 2019 (late summer)

• Event Forecasts
 – Cases of significant/noteworthy weather
 ♦ Major low impacting Ross Is. 3–4 Dec 2018
 ♦ Unusual ridge/flow over continent 18–22 Dec 2018
 ♦ Log fog/cloud period at WAIS causing flight aborts 8–9 Jan 2019
Case Study: Continent-Wide Ridge 18–22 Dec 2018

– Upper-level ridge: Flow crossing continent from QML to Ross Sea

400 mb analysis 00 UTC 20 Dec 2018 (Height interval= 60 m)

SLP/Precip 00 UTC 20 Dec 2018
72h AMPS WRF fcst
Case Study: Low Impacting McMurdo 3–4 Dec 2018

- Deep, strong low moving into Ross Sea from NW
- Strong winds and precip in Ross Is. region: Flight cancellations

500 mb analysis 00 UTC 4 Dec 2018
Height interval= 60 m
Cloud shaded

SLP/Precip 00 UTC 4 Dec
24h AMPS WRF fcst
Case Study: Low Impacting McMurdo 3–4 Dec 2018

Sfc wind gusts (kt) 00 UTC 4 Dec
24h AMPS WRF fcst

Phoenix Field Meteogram
00 UTC 3 Dec 2018 init
DA Experiment Methodology: Varied System Inputs from Different Forecast Ensembles

- AMPS WRF DA: Hybrid Ensemble/3D-Variational DA (3DEnVar)
 - Key system component: Background Error (BE) covariances
 - BE input types to 3DEnVar: (1) Static and (2) Ensemble

```
Obs (i) STD
(ii) STD + SOP
```

```
WRFDA 3DEnVar
```

```
WRF Analysis
```

```
WRF Forecast
```

Diagram:
- Background (WRF)
- Static BEs
- Ensemble BEs
- WRF Model forecast generation path (WRF Model forecast generation path)

The 2 ensembles to be run come into play here.
Approach to DA Experiment Ensemble Input

Run 2 WRF Ensembles \Rightarrow 2 Ensemble BE Sets \Rightarrow

2 DA Setups \Rightarrow 2 Different Forecast Analyses

- **Ensemble 1**

 Input: GFS Global Ensemble Forecasting System (GEFS) output used to initialize WRF ensemble

- **Ensemble 2**

 Input: Cycled WRF members w/member reanalysis via DA using the **DART** data assimilation system

DART = Data Assimilation Research Testbed

NCAR community system for *ensemble* data assimilation: Ensemble Kalman Filter (EnKF) technique
DA Approach Development and Testing

• **Testing of Cycled WRF Ensemble Completed**
 – Cycled WRF ensemble created and tested
 Period: 1 Nov 2017– 10 Dec 2017
 – WRF w/6-h cycling with DART DA

 Results: ✔ *Cycled system stable*
 ✔ *No forecast problems*

• **DART Configuration and Testing**
 – System applied to Antarctica: Code modified for WRF polar stereographic grid projections

 Results: ✔ *Error reductions in analyses*
 ✔ *Behavior reasonable*
Testing of DART: T Biases at RAOB Sites

Prior Bias = Background – Obs \textit{Before DART DA}

Posterior Bias = Analysis – Obs \textit{After DART DA}

Test Period: 1 Nov 2017–10 Dec 2017

T Bias Frequencies -- Prior

T Bias Frequencies -- Posterior
Summary: YOPP-SH Data Impact Study Update

• Experiment, Case, and Data Preparation
 – Target events/periods selected and case analyses begun
 – Data preparation
 ✓ Soundings compiled, formatted, and catalogued
 ✓ Sounding acquisition: “Thanks” to community (esp. BAS) on the efforts to collect and provide!

• DA and Ensemble Systems Setup
 – AMPS WRF cycling: Cycled system prepared, tested, stable
 – DART development
 ✓ Successfully applied for WRF over Antarctica
 ✓ Testing/tuning: Performance reasonable

Experimental runs to begin soon!