

An expendable polarisation backscatter sonde

Murray Hamilton Physics, University of Adelaide South Australia

Topics for this talk

- A bit of shameless advertising for U of A lidar/radar
 - (Mostly DIAL)
- The backscatter sonde idea

- U of A Physics includes
 - Optics
 - high power lasers for LIGO, lidar, guide stars
 - Atmospheric Physics
 - radar (AAD/UA collaboration)
 - Institute for Photonics and Advanced Sensing
 - Overarching structure with which Opt & Atmos groups associated

Water vapour differential absorption lidar

- Receiver and optical amp.
- Master lasers
 - 823 nm, ca 20 mW, CW
 - 1 µs pulses @ 1.5 kHz from AOMs

• DIAL results, Adelaide 22 03 2010

Water vapour DIAL

- Lab demo working (ARC and BoM funding)
- Mobile version under construction (DSTO funding)
- Limited at present by unsuitable choice of water resonance
 - For specific humidity typical of Adelaide we want resonance about 3 x weaker
 - But would work for location with 3 x less specific humidity!

The future of lidar at Adelaide -

- Buckland Park field station
- New Multi-use LIDAR facility
- Complements existing radars:
 - MF Radar
 - VHF wind profiling radar
 - RASS

Ice fraction in mixed phase cloud

- Mixed phase cloud with super-cooled liquid is quite common
 - Aircraft icing hazard
 - Of importance to overhead surveillance and satellite communication
 - Much of microphysics still not understood
 - Ice fraction is important for understanding radiative properties of clouds
- mm-wave radar
 - Only remote sensing method that can *profile* the ice-fraction
- Lidar sees only near edge of cloud unless optically thin
 - Lidar + radar is a good combination though!
- Radiometric methods can sense mixed phase
 - Overhead platforms have difficulty distinguishing cloud over snow or ice
 - But radiometer + radar is also good

Wanted: a low-cost polarisation backscatter sonde

- Measure depolarisation of backscatter from LED <u>inside</u> a cloud
- Modern LED's (light emitting diodes) have high power and are cheap
- E.g. blue (470 nm) at 400 mW costs ca \$10.
- Plan: make LED based sondes
 - piggy-back on ordinary sondes (e.g. RS92)
 - Vaisala sells suitable interfaces to the RS92

Cobald

- An existing LED based backscatter sonde
 - Dual wavelength
 - Does not have depolarisation capability
- Thomas Peter group @ ETH, Zurich; see

http://www.iac.ethz.ch/groups/peter/research/Balloon_soundings/COBALD_sensor

COBALD and Wyoming sonde

Single & multiple scattering

- Single backscattering from spherical droplet gives little depolarisation
 - Small for finite detector aperture
 - Vanishes as detector aperture tends to tiny
- But there is depolarisation from multiple scattering
 - How much is not obvious
 - Modelling is needed

- Ice crystals give significant depolarisation
 - How much info on growth habit can be gleaned from depol'n is unknown

A feasibility experiment

- Warm mist from ultrasonic mister (top photo) ٠
- Cold mist by adding liquid N₂ to water (middle photo) ۲
- Blue or amber LEDs used •
 - with lenses to minimise beam spread
- Rotating polariser under LED
- *Fixed* polariser under photodiode

Photodiode signal with rotating polariser

Depolarisation from amber LED

Depolarisation from blue LED

Needed

- Opportunities for validation
 - Esp. in-situ cloud particle imagers on planes, towers or tethered balloons
 - mm-wave radar
- Partners
 - with instruments for intercomparison
 - Platforms, balloon facilities etc
- Funding
 - Having the first two in place should make this third problem much easier!