A perspective on tra
 operational
 David H. Bromwich, Julien P. Nicolas and Jordan Powers

AMOMFW 2011

Hobart, 22-24 June 2011

Objectives

Two tragic accidents during last Antarctic OS:
Crash of a French helicopter off Adelie Land in Oct. 2010 (4 victims)

Sinking of a Norwegian ship in the McMurdo Sound in Feb. 2011 (3 victims)

Both coincided with intense storms
Our goal here:
investigate how well/how far ahead these two storms were forecast by AMPS

NOT to establish the precise causes of the accidents

I. French helicopter crash off

 the coast of Adélie Land(28 October 2010)

What happened?

Last October, the icebraker Astrolabe was forced to remain 370 km offshore from DDU because of sea ice Late on 28 Oct., a first helicopter took off from the Astrolabe with personnel and supplies and reached DDU
20 minutes later, a 2 nd helicopter left the Astrolabe. It crashed ca. 100km from DDU, killing all 4 people onboard _ Suggests rapid deterioration of the weather conditions

SEA ICE CONCENTRATION

Synoptic environment

MSLP (hPa)
Fcst. 018h

MSLP (hPa)
Fcst. 030h

Low pressure system to the west of DDU moving toward the continent Air piling up along the coast to the east of the low creates pressure gradient perpendicular to the coast „typical setup for barrier winds

The storm

The storm

Observations from D-10 AWS (near DDU)

Timing of the barrier wind event reflected in AWS observations Shift to easterly wind shortly before 12 UTC on Oct 28 with intensification from then onward Max wind intensity offshore

Timing of the barrier wind flow in AMPS

In AMPS, the barrier winds set up between 12 and 15 UTC - agrees well with the AWS observations

Between the Astrolabe and DDU, the wind conditions change from gentle to stormy within 3 hours Intense lateral wind flow creates dangerous flying conditions for the helicopter

How far ahead was this wind event predicted by AMPS?

AMPS forecasts initialized 48 h prior to the accident

WIND SPEED AT $300 \mathrm{M}(\mathrm{m} / \mathrm{s})$
AMPS forecasts initialized 4.5 days prior to the accident

Conclusions

Although the validation of AMPS from observations is limited here, it suggests that AMPS correctly forecasts the timing of the barrier wind event
The long flight between Astrolabe and DDU (370km, approx. 3-4 hours) left the helicopters exposed to the rapidly changing wind conditions
Ongoing judicial investigation to determine the precise causes of the accident
II. Sinking of a Norwegian ship in the McMurdo Sound
(22 February 2011)

What happened?

In Feb 2011, a group of 5
Norwegians set off to reach the South Pole on... quad bikes from the Ross Island area.
On 22-24 Feb, their yacht, Berserk, was caught in an intense storm and disappeared in the McMurdo Sound with 3 men aboard.
The two other crew members had been dropped on the Ross Ice Shelf with squad bikes before the storm. They made it safely to Scott Base before being repatriated to NZ

Photos from http://www.sailingforsos.com/

Synoptic environment

MSLP (hPa)

MSLP (hPa) Fcst. 030h

Low pressure system near Victoria Land, to the north of the Ross Sea Easterly flow in the western Ross Sea
Flow blocked by the Transantarctic Mountains 』 southeasterly

The storm

AMPS forecast for 06 UTC 22 Feb (max storm intensity) with the 1.6 km grid

Typical flow splitting around Ross Island, causing wind intensification
Where Berserk sank, wind reached $>60 \mathrm{kts}$
Winds >80kts in eastern Ross Island

What the observations show

 > Observations from Marble Point: the storm reached its maximum intensity between on 22 Feb, between 00 and 12 UTC
 \section*{Observations from Marble
 \section*{Observations from Marble Point: the storm reached Point: the storm reached its maximum intensity its maximum intensity between on 22 Feb, between on 22 Feb, between 00 and 12 UTC} between 00 and 12 UTC}

Courtesy from AMRC/SSEC

The storm (1.6km grid)

30h ahead, AMPS forecasts max storm intensity around 06 UTC 22 Oct consistent with the observations

How far ahead was the storm predicted by AMPS?

For the 1.6 km grid, AMPS forecasts are available up to 36 h In the following slides, we look at the forecasts from the 15 km grid (up to 120 h)

The storm (15km grid)

- Initialized 00 UTC 21
 Feb
 $=30 \mathrm{~h}$ before storm max intensity

The storm (15km grid)

- Initialized 00 UTC 20 Feb
 $=54 \mathrm{~h}$ before storm max intensity

The storm (15km grid)

- Initialized 00 UTC 19 Feb
 $=78 \mathrm{~h}$ before storm max intensity

Conclusions

The Norwegian ship sank in a highly exposed area in the McMurdo Sound
The timing of the storm was correctly forecast by AMPS 30h ahead In the earlier forecasts, AMPS predicts weaker storm intensity as it places the low pressure system farther north from Ross Island A barrier wind component parallel to the Transantarctic Mountains likely contributed to intensify the wind in the Ross Island area

Sources

French helicopter
http://www.southpolestation.com/trivia/10s/squirrel.h http://blogs.nature.com/news/thegreatbeyond/2010/1
Norwegian ship
http://www.stuff.co.nz/national/4709377/Three-die-in-

Special thanks to the AMRC/AWS Team for making available the AWS data and maps!

Questions?

