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DATA SOURCES:

Automatic weather station (AWS) data: 
§ McMurdo LTER program

Numerical model products: 
§ Antarctic Mesoscale Prediction 

System  (AMPS)
§ Japanese Reanalysis Project (JRA-

25)

Satellite imagery:
§  Landsat 7 ETM+

outline
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physical setting
Click to edit Master text styles
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● Third level
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McMurdo Dry Valleys (MDVs):

§ Largest ice-free area in the Antarctic 
~4,800 sq km

§ Three large NE - SW  trending valleys

§ Mountain ranges ascending ~2000m 
above valley floor

§ Slow-moving glaciers
§ Perennially ice-covered lakes
§ Summer meltwater streams
§ Diverse microbial and algal communities
§ Extensive sedimentary deposits
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§ Large cyclones in the Ross Sea region produce strong pressure gradients 

§ Flow is forced to cross topographic barriers of MDVs, deflected into valleys

§ Prominent large-amplitude mountain wave pattern develops: levels > 8 km asl

background – foehn mechanism
Backward trajectory 24 May 2007 Cross section 24 May 2007Sea Level Pressure 24 May 2007

Speirs, J., Steinhoff, D., McGowan, H., Bromwich, D., and Monaghan, A. 2010: Foehn  Winds in the 
McMurdo Dry Valleys, Antarctica: The origin of extreme warming events. Journal of Climate,  23 (13), 
3577–3598.
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Identification of foehn in AWS records:

§  Foehn criteria identifies onset of foehn events 
●  Wind speed > 5 m/s 
●  Wind direction from SW  
●  Warming > +1 °C / hour  
●  ↓ RH > 5 % / hour

§ “Foehn day”: Day that has identified foehn 
onset and foehn conditions > 6 hours

AMPS Backward trajectories for 172 
foehn days 2006-2007 at Lake Bonney

foehn variability

AMPS SLP and near-surface wind vector composites 
(2006 -2007) for: (a) Non-foehn days, (b) Foehn days
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Monthly mean, min and max
foehn days for 1996 and 2008.

§ Foehn frequency highest in winter

§ Lower in summer due to: 
• reduced cyclonic activity in the Ross Sea (Simmonds et al. 

2003)

• increased frequency of strong easterly ‘sea breeze’ → 
prevents grounding of foehn?

§ Reduced foehn in Victoria Valley due to cold 
air pooling (Doran et al. 2002)  →prevents grounding of 
foehn

§ Large variability in foehn occurrence

Lake Hoare (TH), Lake Bonney (TB)

Lake Vanda (WV), Lake Vida (VV)

foehn variability
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foehn variability

Monthly standardised foehn anomaly and standardised air temperature anomaly for 
Lake Hoare. Data is smoothed with a 5 month moving average. 

§ Foehn winds explain >70% of the variability in monthly mean air temperature

§ Foehn days =  58 % of days with a mean daily air temperature > 0°C

Foehn effect on monthly temperature anomalies
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SOI
(NOAA CPC)

R

SAMI
(Marshall 2003)

R

Foehn
Days

DJF +0.3709 +0.7482
MAM -0.2963 -0.7724
JJA +0.0077 -0.3564
SON +0.0914 +0.0827

Air 
Temp.

DJF -0.0868 +0.0086
MAM -0.0703 -0.4986
JJA +0.6818 -0.0965
SON +0.2292 +0.2921

foehn variability

§ Cyclone frequency and intensity

§ SAM and ENSO known to affect MSLP and                                                       
cyclonic activity in the region

§ May expect positive relationship with SOI and SAMI
§ +ve SOI (La Nina), ↑ Amundsen Sea Low (e.g. Cullather et al. 1996),  ↑ Foehn
§ +ve SAM, ↑ cyclones around Antarctica (e.g. Pezza et al. 2009),  ↑ Foehn

§ Positive relationship seen in summer foehn and SAM

§ Positive relationship with winter air temperature and SOI

§ Negative relationship with autumn foehn and SAM 

What drives foehn variability?

Significant for 
landscape processes
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foehn variability

JRA-25 MSLP difference plots 1980-2008

-ve SAMI minus  +ve SAMI seasons. Zero line in 
bold, negative MSLP shown by dashed line only 
evident for MAM, plots are mainly positive 
i.e lower MSLP during +ve SAM

§ Large area of pressure differences 
during SAM summers

§ Likely associated with changes in  
cyclone frequency

§ Cause for relationship between 
SAM and foehn winds in summer



Average daily air temperature and foehn 
days (red dots) for summer 2001/02 (top) 
and 2002/03 (bottom).

Landsat 7 ETM+ image of MDV region  21-
Nov 2001 (top) and 17-Nov 2002 (bottom). 
Snow persists longer into the 2002 summer 
season with less foehn heating. TIR images 
28-Dec 2001 (top) and 31-Dec 2001 
(bottom)
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32 Foehn Days
Ave. Temp -1.86°C

19 Foehn Days
Ave. Temp -3.99°C

Discharge (L/s) of the Onyx River, 
Wright Valley during 2001/02 (top) and 
2002/03 (bottom)  summers.

Low stream discharge

High stream discharge

2001/02 (+ SAM)

2002/03 (neutral SAM)

landscape processes
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landscape processes

§ Small changes in Antarctic circulation and foehn frequency can produce 
dramatic changes in the climate-landscape system

§ Effects of foehn winds outlive the duration of the event
→ Significant lag effects present in meteorological variables

(a) Air temperature (b) Soil temperature (c) Sublimation/evaporation

Lag effects of foehn days on meteorological variables in the McMurdo Dry Valleys 1999-2008:
- Negative (-1,-2) = days prior to a foehn day .

 - Positive (+1,+2,+3,+4) = days after a foehn event. 
 - ‘Other’ = days not occurring in the vicinity of a foehn day.  
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The influence of foehn on average daily stream discharge for melt-water streams

§ Stream discharge during foehn days in the Taylor Valley is 250% of non-foehn days

§ 680% for the Onyx River in the Wright Valley

§ The 2001/2002  summer known to be a season of particularly high levels of flow 
[and foehn]. Even when this summer season is removed, foehn days still contribute 
to 225% of non-foehn flow. 

§ Foehn wind regime played a pivotal role in creation and removal of large liquid lakes 
occupying valley floors in the LGM and early Holocene (e.g. Lyons et al., 1998; Hall et al., 2001) 

Stream discharge
(a) Taylor Valley (b) Wright Valley

landscape processes
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§ Dense AWS network + high resolution modelling allows important aspects of the MDVs climate system to 
be uncovered

§ Foehn variability caused by:

- Variability in synoptic circulation - cyclone tracks in the Ross Sea region

- ENSO/SAM signal in MSLP and cyclone activity in Ross/Amundsen Seas

- Intraseasonal variability show MJO forcing (Steinhoff et al. in prep) 

§ Foehn is a mechanism for tropical and hemispheric influences in the MDVs
→ Future changes in these signals holds important repercussions for the MDVs climate

§ Foehn winds are a vital part of the MDVs environmental system 
→ Driver of landscape variability and change

summary & implications
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Upcoming field work 2011/2012 and 2012/2013
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Upcoming field work 2011/2012 and 2012/2013
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