

Foehn Winds in the McMurdo Dry Valleys: Implications for climate variability and landscape evolution

Johanna Speirs and Hamish McGowan

Climate Research Group, School of Geography, Planning and Environmental Management University of Queensland, Australia

and

Daniel Steinhoff and David Bromwich

Polar Meteorology Group, Byrd Polar Research Center Ohio State University, USA

outline

1. INTRODUCTION

Physical setting

Background

2. FOEHN VARIABILITY

Intra- and inter-annual frequency Effects on temperature regime Influence of SAM and ENSO

3. LANDSCAPE PROCESSES

Thermal inputs

Melt and stream discharge

Snow persistence

DATA SOURCES:

Automatic weather station (AWS) data:

McMurdo LTER program

Numerical model products:

- Antarctic Mesoscale Prediction System (AMPS)
- Japanese Reanalysis Project (JRA-25)

Satellite imagery:

S Landsat 7 ETM+

physical setting

McMurdo Dry Valleys (MDVs):

- § Largest ice-free area in the Antarctic ~4,800 sq km
- § Three large NE SW trending valleys
 - § Mountain ranges ascending ~2000m above valley floor
 - § Slow-moving glaciers
 - § Perennially ice-covered lakes
 - § Summer meltwater streams
 - § Diverse microbial and algal communities
 - § Extensive sedimentary deposits

7°30'0"S

background – foehn mechanism

§ Large cyclones in the Ross Sea region produce strong pressure gradients
 § Flow is forced to cross topographic barriers of MDVs, deflected into valleys
 § Prominent large-amplitude mountain wave pattern develops: levels > 8 km asl

Speirs, J., Steinhoff, D., McGowan, H., Bromwich, D., and Monaghan, A. 2010: Foehn Winds in the McMurdo Dry Valleys, Antarctica: The origin of extreme warming events. Journal of Climate, 23 (13), 3577–3598.

Identification of foehn in AWS records:

- § Foehn criteria identifies onset of foehn events
- Wind speed > 5 m/s
- Wind direction from SW
- Warming > +1 °C / hour
- ↓ RH > 5 % / hour

§ "Foehn day": Day that has identified foehn

AMPS Backward trajectories for 172 foehn days 2006-2007 at Lake Bonney

AMPS SLP and near-surface wind vector composites (2006 -2007) for: (a) Non-foehn days, (b) Foehn days

§ Foehn frequency highest in winter

§ Lower in summer due to:

- reduced cyclonic activity in the Ross Sea (Simmonds et al. 2003)
- increased frequency of strong easterly 'sea breeze' \rightarrow prevents grounding of foehn?
- S Reduced foehn in Victoria Valley due to cold air pooling (Doran et al. 2002) → prevents grounding of foehn
- § Large variability in foehn occurrence

Monthly mean, min and max foehn days for 1996 and 2008.

Foehn effect on monthly temperature anomalies

Monthly standardised foehn anomaly and standardised air temperature anomaly for Lake Hoare. Data is smoothed with a 5 month moving average.

- [§] Foehn winds explain >70% of the variability in monthly mean air temperature
- [§] Foehn days = 58 % of days with a mean daily air temperature > 0°C

What drives foehn variability?

- § Cyclone frequency and intensity
- § SAM and ENSO known to affect MSLP and cyclonic activity in the region

		SOI (NOAA CPC) R	SAMI (Marshall 2003) R
	DJF	+0.3709	+0.7482
Foehn	MAM	-0.2963	-0.7724
Days	JJA	+0.0077	-0.3564
	SON	+0.0914	+0.0827
	DJF	-0.0868	+0.0086
Air	MAM	-0.0703	-0.4986
Temp.	JJA	+0.6818	-0.0965
	SON	+0.2292	+0.2921

- § May expect positive relationship with SOI and SAMI
 - § +ve SOI (La Nina), ↑ Amundsen Sea Low (e.g. Cullather et al. 1996), ↑ Foehn
 - \$ +ve SAM, ↑ cyclones around Antarctica (e.g. Pezza et al. 2009), ↑ Foehn
- § Positive relationship seen in summer foehn and SAM Significant for
- § Positive relationship with winter air temperature and SOI
- **§** Negative relationship with autumn foehn and SAM

Significant for landscape processes

JRA-25 MSLP difference plots 1980-2008

-ve SAMI minus +ve SAMI seasons. Zero line in bold, negative MSLP shown by dashed line only evident for MAM, plots are mainly positive i.e lower MSLP during +ve SAM

- S Large area of pressure differences during SAM summers
- Likely associated with changes in cyclone frequency
- Cause for relationship between
 SAM and foehn winds in summer

-6 -3

-9

9

3 6

Units = hPa

12 15

10

landscape processes

Average daily air temperature and foehn days (red dots) for summer 2001/02 (top) and 2002/03 (bottom).

Landsat 7 ETM+ image of MDV region 21-Nov 2001 (top) and 17-Nov 2002 (bottom). Snow persists longer into the 2002 summer season with less foehn heating. TIR images 28-Dec 2001 (top) and 31-Dec 2001

(hottom)

Brightness Temperature (K)

270

280

290

Discharge (L/s) of the Onyx River, Wright Valley during 2001/02 (top) and 2002/03 (bottom) summers.

landscape processes

- Small changes in Antarctic circulation and foehn frequency can produce dramatic changes in the climate-landscape system
- [§] Effects of foehn winds outlive the duration of the event
 - \rightarrow Significant lag effects present in meteorological variables

Lag effects of foehn days on meteorological variables in the McMurdo Dry Valleys 1999-2008:

- Negative (-1,-2) = days prior to a foehn day .
- Positive (+1,+2,+3,+4) = days after a foehn event.
- 'Other' = days not occurring in the vicinity of a foehn day.

landscape processes

The influence of foehn on average daily stream discharge for melt-water streams

- ^s Stream discharge during foehn days in the Taylor Valley is 250% of non-foehn days
- [§] 680% for the Onyx River in the Wright Valley
- ^s The 2001/2002 summer known to be a season of particularly high levels of flow [and foehn]. Even when this summer season is removed, foehn days still contribute to 225% of non-foehn flow.
- ⁵ Foehn wind regime played a pivotal role in creation and removal of large liquid lakes occupying valley floors in the LGM and early Holocene (e.g. Lyons *et al.*, 1998; Hall *et al.*, 2001)

summary & implications

- § Dense AWS network + high resolution modelling allows important aspects of the MDVs climate system to be uncovered
- § Foehn variability caused by:
 - Variability in synoptic circulation cyclone tracks in the Ross Sea region
 - ENSO/SAM signal in MSLP and cyclone activity in Ross/Amundsen Seas
 - Intraseasonal variability show MJO forcing (Steinhoff et al. in prep)
- § Foehn is a mechanism for tropical and hemispheric influences in the MDVs
 - → Future changes in these signals holds important repercussions for the MDVs climate
- § Foehn winds are a vital part of the MDVs environmental system
 - → Driver of landscape variability and change

Temperature and RH Transect (HOBO[™])

Field observation campaign: 2 x Eddy Covariance Units, Acoustic Sounder, Radiosondes, Instrumented Kite

- HOBO[™] AWS
- LTER AWS

Upcoming field work 2011/2012 and 2012/2013

acknowledgments

- § McMurdo LTER Program for use of AWS data
- Steinhoff and Bromwich's contribution are supported by NSF grant ANT-0636523
- **§** Financial support of UQ, School of GPEM

Speirs, J., Steinhoff, D., McGowan, H., Bromwich, D., and Monaghan, A. 2010: Foehn Winds in the McMurdo Dry Valleys, Antarctica: The origin of extreme warming events. *Journal of Climate*, 23 (13), 3577–3598. DOI: 10.1175/2010JCLI3382.1

Speirs, J., McGowan, H., Steinhoff, D., and Bromwich, D. 2011: Regional climate variability driven by foehn winds, McMurdo Dry Valleys, Antarctica. *International Journal of climatology* (Submitted.)

Speirs, J., and McGowan, H. 2011: Foehn winds in a polar landscape: a driver of environmental change. Journal of Geophysical Research (In prep.) Johanna C. Speirs, University of Queensland, School of GPEM, Brisbane 4072, QLD, Australia. Email: j.speirs@ug.edu.au 17