Case Study of a High Wind Event Off the Coast of the Prince Olav Mountains, Antarctica

John J. Cassano
Melissa A. Nigro

Cooperative Institute for Research in Environmental Sciences
Department of Atmospheric and Oceanic Sciences
University of Colorado, Boulder, Colorado
Outline

• Motivation: Local jets over the RIS

• Sabrina AWS: High Wind Event

• Tip Jet: What is this?

• Conclusion

Photo: Melissa Nigro

Sabrina AWS
Mean annual wind speeds for the lowest sigma level (approximately 11-13 m AGL) from the AMPS 30 km archive for 2001 - 2005. Contour lines are in intervals of 2.5 m s⁻¹.
Sabrina AWS: High Wind Event

Wind Speed at Sabrina for 09-2009

Wind Speed (m/s)

Day of the Month
High Wind Event: 9-5-2009
12 UTC
Initial State

Sea-Level Pressure

Winds at 10 m (grid)
High Wind Event: 9-5-2009
21 UTC
Barrier Wind Development

Magnitude of Wind Speed (ms⁻¹) Parallel to Cross Section: 9-5-2009 21UTC
High Wind Event: 9-5-2009 21 UTC

Barrier Wind Development

Winds at Pressure Levels (grid)

Geopotential Height at Pressure Levels

CONTOUR FROM 400 TO 4000 BY 400

WRF 15km 700hPa 9-5-2009 21UTC

CONTOUR FROM 400 TO 4000 BY 400

WRF 15km 500hPa 9-5-2009 21UTC
High Wind Event: 9-6-2009 21 UTC

Barrier Wind + Tip Jets

Sea-Level Pressure

Winds at 10 m (grid)

WRF 15km 9-6-2009 21UTC

CONTOUR FROM 400 TO 4000 BY 400

Wind Speed
10 m/s
Greenland Reverse Tip Jet

Prince Olav Mtns. Tip Jet

Sea-Level Pressure

Winds at 10 m (grid)
Conclusions

• Forcing for the high wind event at Sabrina AWS:
 – Katabatic winds
 – Synoptic circulation / blocked flow
 – Barrier winds
 – Enhanced by mesoscale surface low over the RIS
 – Topographic influences from the Prince Olav Mountains

• The acceleration downstream of the Prince Olav Mountains is consistent with the dynamics of a Greenland reverse tip jet

• Due to unique topography, three tip jets are induced along the base of the Transantarctic Mountains in this event
Questions?

Photo: Melissa Nigro