Foehn Mechanism in the McMurdo Dry Valleys from Polar WRF

Daniel F. Steinhoff and David H. Bromwich

Polar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, R RESEARCH CENTER he Ohio State University, Columbus, Ohio

E OHIO STATE UNIVERSI http://bprc.osu.edu/ Photo credit: Chris Gardner ©2006 McMurdo Dry Valleys.

McMurdo Dry Valleys (MDVs): A Complex Environment

- Largest ice-free region in Antarctica (~ 4800 km²), featuring streams and melt lakes
- Located between
 McMurdo Sound (open water in summer) and
 East Antarctic Ice Sheet
- Complex terrain nearby Royal Society Range > 4 km elevation, ranges between valleys > 2 km elevation

Importance of MDVs Meteorology and Climate

- Highly multidisciplinary environment – geochemistry, microbiology, glaciology, hydrology, limnology, soil science, and even a Mars analog!
- Why it matters:
 - The meteorology and climate affect ALL aspects of the MDVs environment
 - Have to get researchers there safely!
 - MDVs have been inferred as a bellwether of climate change: Is this valid?

Lake Vida AWS Photo credit: Thomas Nylen © 2006 McMurdo Dry Valleys LTER

Two Primary Wind Regimes in Summer

From Speirs et al. (2011), submitted to *Int. J. Climatol.*

- Easterly sea-breeze: dominant summer flow.
 Occurs during weak forcing. At or below 0°C.
- Strong, warm, dry westerly winds during sporadic episodes. Ablation through blowing snow and melt. Can rise well above 0°C.
- How do these westerly foehn winds form?

Polar WRF Simulations

Basics:

- Polar WRF 3.2.1
- 500 m grid spacing
- 55 vertical levels
- Truly horizontal diffusion
- Nudging above 1.5 km AGL (outermost domain only)
- ERA-Interim, NOAA SST, 6 km sea ice (Univ. Bremen), 200 m RAMP DEM

- Modifications made specifically for MDVs:
 - Special bare ground land use (courtesy Kevin Manning)
 - Snow cover removed
 - Correct soil specification
 - Additional model code for fractional sea ice
 - One year spinup of land surface state initialized from field study soil observations

Foehn Components: Gap Flow

- Gap Flow: Flow through a gap in a mountain barrier, forced by the cross-gap pressure gradient.
- There is a gap just south of the MDVs, between the Royal Society Range and Taylor Dome

How is Gap Flow Set Up?

Sea Level Pressure (Contours) Near-surface Temperature (Shaded) Near-surface Wind Vectors 1800 UTC 29 December 2006 Terrain blocking effects responsible for pressure differences across gap

- Associated with cyclonic flow over Ross Ice Shelf – prominent for foehn events (Speirs et al. 2010)
- Mass accumulates upstream – pressure increases
- Flow can even be normal to the ridge (i.e., easterly)!

Gap Flow Drives Southerly Winds into MDVs

- Wind speed over gap strongly tied to the cross-gap pressure difference
- There are some deviations to this relationship...

Foehn Components: Mountain Waves

- The gap is elevated and features complex terrain, leading to mountain wave effects that modulate the gap flow
- Primary effect is strong leeside winds extending into western Taylor Valley

Wave-breaking regions

Strong downslope winds into western Taylor Valley

Hydraulic jumps responsible for sharp wind speed cessation

Potential Temperature(Contours) Along-transect Wind Speed (Shaded) 1800 UTC 30 December 2006

Foehn Components: Pressuredriven Channeling

- Ambient flow blocked by Royal Society Range eastern MDVs do not receive direct foehn flow.
- So how do we get warm, westerly winds down the valleys?
- As flow is blocked or hydraulic jumps occur along valley walls, pressure increases
- Just like gap flow, flow accelerates down the pressure gradient, bringing warm and dry foehn air down valley

Near-surface wind speed and streamlines

Sea Level Pressure

> 0900 UTC 30 December 2006

Foehn Components: Easterly Intrusions

- Easterly intrusions of cool, maritime air occur during foehn events what causes them?
- As flow is blocked by Ross Island (to the east), it is deflected westward towards MDVs, and blocked, increasing pressure along coast
- This provides an opposing force to the down-valley warm westerly winds
- Thermodynamic sea-breeze effect negligible during strong forcing

Nearsurface wind speed and streamline s

Sea Level Pressure

> 0900 UTC 30 Decembe r 2006

Summary of Foehn Mechanism

Pre-requisite: Strong winds aloft (either to set up cross-gap pressure difference or flow directly across gap), leading to large-amplitude mountain waves and foehn

One problem: Foehn too strong!

- Positive wind speed bias during foehn events in Polar WRF – hampers foehn mechanism analysis and climatological study
- Suggests model problems with mountain waves.
 Possible sources:
 - Turbulence / Diffusion (whether calculated on model surfaces or x,y,z space, isotropic or anisotropic mixing lengths, diffusion coefficient values)
 - Distribution of model levels near surface
- Important modeling issues that extend beyond MDVs

Discussion

- Strong westerly wind events in MDVs are foehn, and should no longer be referred to as "katabatic", as there is no katabatic forcing.
- Strong similarities of MDVs meteorology to the Austrian Alps (near Innsbruck) – gap flow through elevated terrain, mountain waves, foehn, blocking effects. MDVs presents opportunity to validate findings from there.
- Many opportunities for mesoscale meteorological research studies in MDVs – both model and observational-based

The Westerly Winds are *Foehn*

- Katabatic winds: forced by negative buoyancy of diabatically cooled near-surface air
- Foehn winds: warmed through adiabatic descent, regardless of moisture

- Speirs et al. (2010) present overwhelming evidence for foehn:
 - **Forced descent from mountain waves into MDVs**
 - MDVs NOT in katabatic wind confluence zone, and katabatic forcing does NOT exist in summer