The study of the δ^{18} O-temperature relationship at an Antarctic coastal station

lisabeth Schlosser, University of Innsbruck, Austria

lans Oerter, AWI, Bremerhaven

arleen Rel<mark>i</mark>mer, IMAU, Utrecht

alerie Masson-Delmotte, LSCE, Cif-sur-Yvett

very successful in paleoclimatology

Climatic information from Greenland and Antarctica, "EPICA"

> different parameters of snow and air bubbles are measured

> stable isotopes: $\delta^{18}O - T$ – relationship not as simple as originally assumed

Ice Cores

> different parameters of snow and air bubbles are measured

- > stable isotopes: $\delta^{18}O T$ relationship not as simple as originally assumed
- > detailed investigation required

> problem: no sufficient data available at drilling locations

> different types of oxygen and hydrogen molecules: ¹⁶O, ¹⁸O, H, ²H (Deuterium D)

> different types of oxygen and hydrogen molecules: ¹⁶O, ¹⁸O, H, ²H (Deuterium D)

ratio of heavy to light molecules changes during evaporation and condensation

> different types of oxygen and hydrogen molecules: ¹⁶O, ¹⁸O, H, ²H (Deuterium D)

ratio of heavy to light molecules changes during evaporation and condensation

this "fractionation" depends on air temperature

> different types of oxygen and hydrogen molecules: ¹⁶O, ¹⁸O, H, ²H (Deuterium D)

ratio of heavy to light molecules changes during evaporation and condensation

this "fractionation" depends on air temperature

H and O behave differently, thus additional information from deuterium excess:

 $(\mathbf{d} = \delta \mathbf{D} - \mathbf{8} \ \delta^{18} \mathbf{O})$

Stable oxygen isotopes

$$\delta^{18}O = \frac{(^{18}O/^{16}O)_{\text{Probe}} - (^{18}O/^{16}O)_{\text{SMOW}}}{(^{18}O/^{16}O)_{\text{SMOW}}}$$

SMOW: standard mean ocean water (analog für δD)

Georg-von-Neumayer-Station 1981-1992

Georg-von-Neumayer Station during polar night

Neumayer Station 1992-2008

Neumayer and ice cores

Ice shelf station > no long climate data series

but: detailed **parallel** meteorological and glaciological measurements for **more than two decades** at the same site:

accumulation, isotopes, snow chemistry and complete meteorological data set including upper air soundings (radiosondes)

This enables us to study the processes that are important for ice core interpretation on small time scales and use the results for the long records.

 δ^{18} O and δ D from snow pits and shallow firn cores (since 1980)

 δ^{18} O and δ D from snow pits and shallow firn cores (since 1980) δ^{18} O and δ D of fresh snow samples 342 samples (1981-2000)

 δ^{18} O and δ D from snow pits and shallow firn cores (since 1980) δ^{18} O and δ D of fresh snow samples 342 samples (1981-2000)

meteorological data of Neumayer SYNOP data radiosonde data

accumulation from stake array, (weekly since 1981) snow pits, and shallow firn cores	δ^{18} O and δ D from snow pits and shallow firn cores (since 1980)	δ^{18} O and δ D of fresh snow samples 342 samples (1981-2000)
meteorological data of Neumayer SYNOP data radiosonde data	5-d-backwards- trajectories from KNMI- trajectory model (1981-2000)	

accumulation from stake array, (weekly since 1981) snow pits, and shallow firn cores		δ^{18} O and δ D from snow pits and shallow firn cores (since 1980)		δ ¹⁸ O and δD of fresh snow samples 342 samples (1981-2000)
	-		-	
meteorological data of Neumayer SYNOP data radiosonde data		5-d-backwards- trajectories from KNMI- trajectory model (1981-2000)		ECMWF- Re-analysis data 500hPa- geopotential height, surface pressure

$\delta^{18}O - T$ - relationship

annual mean of δ^{18} O and air temperature

$\delta^{18}O - T$ - relationship

annual mean $\delta^{18}\text{O}$ and air temperature

Neumayer

Change in seasonal distribution of accumulation due to interannual changes of *synoptic conditions*

Bias in mean annual $\delta^{18}O$

Deep drillings

Change in seasonal distribution of accumulation due to <u>Change of General</u> <u>Atmospheric Circulation</u> at transition from ice age to warm period

Bias in mean annual δ^{18} O in ice core

Neumayer

<u>seasonal change in sea</u> <u>ice coverage</u>

change in accumulation distribution

change in δ^{18} O without change in T!

Deep drillings

<u>change in mean sea ice</u> <u>coverage at transition ice</u> <u>age - warm period</u>

change in storm tracks

- change in accumulation distribution
 - change in δ^{18} O without change in T!

$\delta^{18}O - T$ - relationship

 $\delta^{18}O$ from surface snow samples (red dots) and measured 2m-air temperature (solid line) 1981-2000

$\delta^{18}O - T$ - relationship

Trajectory model

- 1: Weddell Sea 3: continental S 4: N-NW > 50°S
- 2: continental E (950 + 850hPa) 5: different for different levels

Trajectory model

1 Weddell Sea

14 north of 60°S, around Weddell Sea

- 2 cont. E-SE
- 3 cont. S
- 4 NW north of 50°S
- **5** Amundsen-Bellingshausen Sea

ECMWF-Re-analysis

2. Nov. 1997

Trajectory class 4 (all arrival levels)

surface pressure

500hPa Geopotent. height

- **NM: Neumayer**
- E: EPICA Kohnen

Outlook

- **Study with 65 firn cores of Dronning Maud Land**
- Study of DML precipitation regime using AMPS
- $> \delta^{18}$ O for firn cores in relation to synoptic situation and sea ice extent
- >Implications for EPICA deep core interpretation

Acknowledgements:

Thanks are due to all Neumayer winterers for doing the field work, to Wolfgang Graf for sample analysis, Alex Gohm for computer support, and the Austrian Science Fund (FWF) for funding.

Map of DML

δ -T – relationship and sea ice

>80% ocean: no sign. corr.! >80% sea or land ice: r= 0.61 (n=76, p<0.0001) 100% ice-covered Weddell Sea (3 days): r=0.73 ! (n=38, p<0.0001)

example: 30.8.95

Deuterium excess

$\mathbf{d} = \delta \mathbf{D} \mathbf{-} \mathbf{8} \ \delta^{18} \mathbf{O}$

depends on : Sea Surface Temp., rel. humidity and wind speed at source area for precipitation (ocean) (empirical equations)

physics: 2 different processes of fractionation:
"kinetic processes":

different *molecular diffusion* of light and heavy molecules

and "equilibrium processes":

different saturation vapour pressure of light and heavy molecules

equilibrium fractionation for D 8-10x larger than for ¹⁸O, kin. effects für D und ¹⁸O similar

rel. contribution of kin. fract. for D smaller than for ¹⁸O

Deuterium excess

Deuterium excess dependent on:

- conditions at first evaporation from ocean
- number and kind of fractionation between first evaporation at the oceanic source and precipitation site

Deuterium excess

Arrival level	950hPa	850hPa	500hPa
Trajectory class	d	d	d
1	8.14	8.94	9.43
14	9.42	6.70	6.06
2	8.41	8.89	-
3	10.79	10.91	11.88
4	5.69	6.15	6.33
5	-	7.80	8.97
53			11.50
6			8.21

Mean deuterium excess d for each class and arrival level, respectively

