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  very successful in paleoclimatology 
  climatic information from Greenland and 
Antarctica, „EPICA“  



  different parameters of snow and air 
bubbles are measured 

  stable  isotopes: δ18O – T – relationship not 
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  different parameters of snow and air 
bubbles are measured 

  stable  isotopes: δ18O – T – relationship not 
as simple as originally assumed 

  detailed investigation required 

  problem: no sufficient data available at 
drilling locations 
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  different types of oxygen and hydrogen 
molecules: 16O, 18O, H, 2H (Deuterium D) 

  ratio of heavy to light molecules changes 
during evaporation and condensation 

  this „fractionation“ depends on air 
temperature 

  H and O behave differently, thus additional 
information from deuterium excess:  

(d = δD- 8 δ18O) 



SMOW:  standard mean ocean water
     (analog für δD) 

δ18O = 
(18O/16O)Probe – (18O/16O)SMOW 	



(18O/16O)SMOW 



Georg-von-Neumayer-Station 1981-1992 



Georg-von-Neumayer Station during polar night 



Neumayer Station 1992-2008 
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Re-analysis data 
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geopotential height, 
surface pressure 
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Neumayer Deep drillings 

Change in seasonal 
distribution of  
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interannual changes of  
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Change in seasonal 
distribution of  
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Change of General 
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at transition from ice age 
to warm period 

Bias in mean 
annual δ18O 

Bias in mean 
annual δ18O in ice 
core 



Neumayer Deep drillings 
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δ18O from surface snow samples (red dots) and measured 2m-air 
temperature (solid line) 1981-2000 







1   Weddell Sea 
14 north of 60°S,  around Weddell Sea 
2   cont. E-SE 
3   cont. S 
4   NW north of 50°S 
5   Amundsen-Bellingshausen Sea 
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NM:  Neumayer 

E:     EPICA Kohnen 
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>80% ocean:    

      no sign. corr.! 

>80% sea  or land ice: 

      r= 0.61  

      (n=76, p<0.0001) 

100% ice-covered 

 Weddell Sea (3 days): 

      r=0.73 ! 

      (n=38, p<0.0001) 

NM 

500hPa 

850hPa 

950hPa 

δ-T – relationship and sea ice 

example: 30.8.95 



Deuterium excess 

d = δD- 8 δ18O 
depends on : Sea Surface Temp.,  rel. humidity and wind speed 

         at source area for precipitation (ocean) 
                     (empirical equations) 

physics:  2 different processes of fractionation: 
 „kinetic processes“: 

               different molecular diffusion  
   of light and heavy molecules 

  and  „equilibrium processes“: 
               different saturation vapour pressure 
               of light and heavy molecules 

  equilibrium fractionation for D 8-10x larger than for 18O, 
  kin. effects für D und 18O similar 
           rel. contribution of kin. fract. for D smaller than for 18O  



Deuterium excess 

d = δD- 8 δ18O 

Deuterium excess  dependent on: 

   conditions at first evaporation from ocean 

   number and kind of fractionation between 
 first evaporation at the oceanic source 
 and precipitation site 



Mean deuterium excess d for each class and 
arrival level, respectively 


