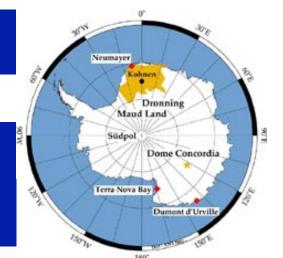
Strong Wind and Heavy Precipitation Events on the Antarctic Plateau: Observations from Kohnen Station, Dronning Maud Land

G. Birnbaum, J. Freitag, G. König-Langlo

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven

R. Brauner


Deutscher Wetterdienst, Hamburg


C. Tijm-Reijmer

Institute for Marine and Atmospheric Research, Utrecht University

Motivation

European Project for Ice Coring in Antarctica (EPICA)

Synoptic classification of visually observed high precipitation events at Kohnen Station during summer campaigns since 2001/02

Synoptic Classification	Frequency
Category I: Occluding fronts of eastward moving lows reach the plateau.	61% of events
<u>Category II</u> : Lows or secondary lows which form east of the Greenwich Meridian move to the west (retrograde movement) and frontal clouds influence the plateau.	30% of events
Category III: Large-scale lifting processes due to an upper air low west of Kohnen Station cause snowfall on the plateau.	9% of events

Birnbaum et al. (2006)

Strong Wind Events

Impact on snow surface structure

Barchan Dune

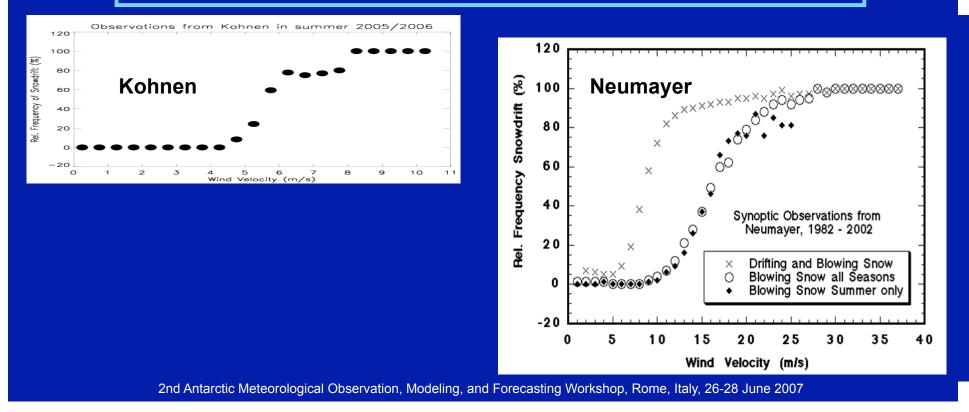
- Glaciological field program at Kohr ≻ summer season 2005/2006:
- Continuous surface inspection
- Profiling of surface density

- Redistribution of unbounded surface snow into hard and dense fine grained layers
- Dunes influence the air transport along the connected pore space in polar firn.
- Drilling of 9 short firn cores of 4-5 m depth along a 600 m profile line

Three snow dune formation events observed in period 2005-11-15 to 2006-01-31:

- Dune surface coverage after an event: 5 to 15 %
- Mean density within a dune: 380 to 500 kg m⁻³ (Mean surface density: 330 +/- 5 kg m⁻³)

- Dune size: 8 +/- 3 m x 4 +/- 2 m
- Maximum height: 0.2 +/- 0.1 m
- Periodicity length: 30 m



Firn core analysis: 3 to 8 events per year of formation of snow dunes that are conserved in the firn

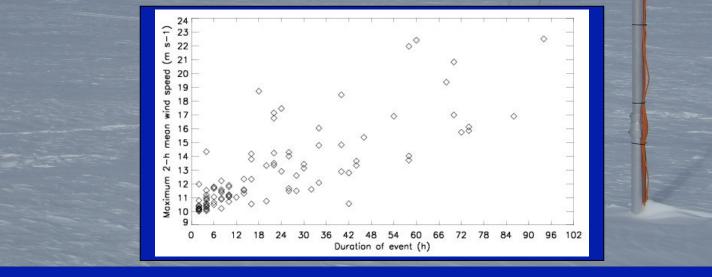
Identification of events

Visual Observations:

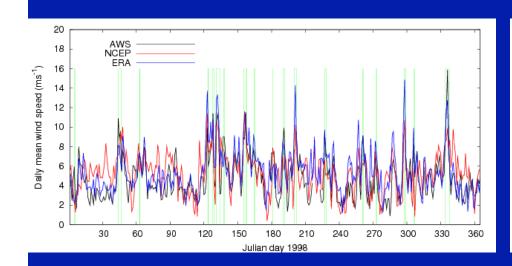
- Drifting snow
- \blacktriangleright Mean wind speed > 10 m s⁻¹ (for 4 and 6 hours, respectively)
- General structure of dunes was formed within 2 hours
- No or very weak precipitation during and 24 hours prior to the event
- Very different accumulation histories during the week prior to the events

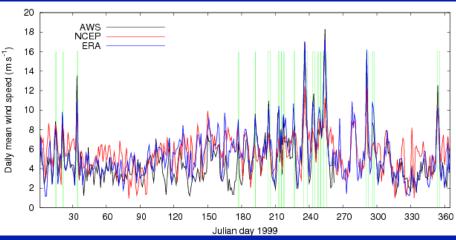
Definition of a strong wind event

- (1) An event starts when the 2-h mean AWS wind speed exceeds
 10 m s⁻¹ for the first time.
- (2) An event ends when the 2-h mean AWS wind speed drops below 10 m s⁻¹.
- (3) Two periods meeting conditions (1) and (2) are considered as one event in case the 2-h mean AWS wind speed does not drop below 5 m s⁻¹ during a time of less than 24 hours between two periods with wind speeds exceeding 10 m s⁻¹.

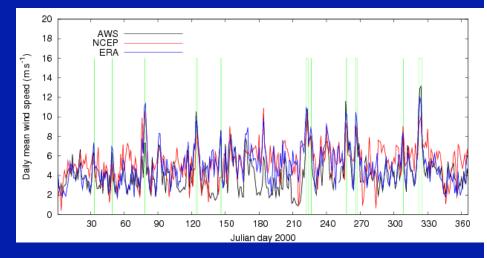

Main characteristics of events

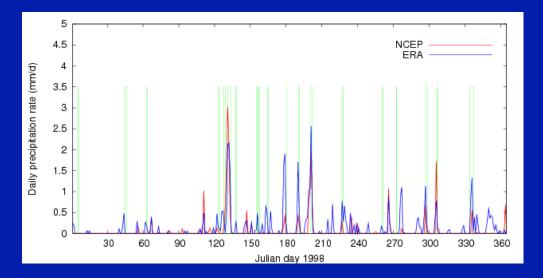
100 strong wind events in the 7-year period 1998-2000/2002-2005:


- > number per year: 11 to 19
- > 18 in summer (DJF)
- > 19 in autumn (MAM)
- > 38 in winter (JJA)
- > 25 in spring (SON)



 Duration (h)	02-12	14-24	26-36	38-48	50-60	62-72	74-84	86-96
Events (%)	50	18	12	7	5	4	2	2


Comparison to NCEP/NCAR and ERA40 Reanalysis Data


NCEP/NCAR grid point (75,2351°S; 0°E)

ERA40 grid point (75°S; 0°E)

How many strong wind events are not directly influenced by moderate or heavy precipitation?

<u>*Criterion*</u>: On the day prior to the event and on all days of the event the precipitation rate is less than 0.2 mm w.e. per day.

	NCEP/NCAR (1998-2000/2002-2005)	NCEP/NCAR (1998-2000)	ERA40 (1998-2000)
Events influenced	43	24	38
Events not influenced (Cases of dune formation)	57 (8.1 events/year)	24 (8.0 events/year)	10 (3.3 events/year)

Firn core analysis: 3 to 8 events per year of formation of snow dunes

S١	vnopti	c clas	sificatior	ו of	strong	wind	events

Pattern

10 typical synoptic situations identified

Conclusions

- Number of snow dunes formed per year and conserved in the firn could be explained by a combined analysis of atmospheric observations and model data.
- Typical synoptic mechanisms for the occurrence of strong wind and high precipitation events could be identified.
- Unexpected high number of events due to retrograde moving lows
- The influence of snow age and microstructure on the redistribution of surface snow has to be investigated further.