Using the surface energy balance to understand the Antarctic stable boundary layer.

Michael S. Town1, Von P. Walden2, and Stephen G. Warren1

1University of Washington, Seattle, WA USA
2University of Idaho, Moscow, ID USA

Session 5. Science using ground-based and satellite measurements
AMOMWF 2007, Rome, Italy.
South Pole 1994-2003, Temp ± 1°C (daily)

2m air temperature

Temperature (°C)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

-80 -70 -60 -50 -40 -30 -20
energy transfer over South Pole

\[G = R_N + H_S + H_L \]

- **net radiation**
- **latent heat**
- **subsurface heat**
- **sensible heat**

positive fluxes are directed downward

Equation:

\[G = S_\downarrow + S_\uparrow + L_\downarrow + L_\uparrow + H_S + H_L \]

- **pyranometer**
- **pyrgeometer**

Patankar (1982)

\[u_{10}, T_S, T_2, T_2f \]

Andreas (2002)

\[\text{pyrgeometer} \rightarrow T_{sfc} \]

finite-volumes

numerical heat transfer model

Patankar (1982)
monthly means: prior work energy transfer over South Pole

Large discrepancies in literature
monthly means:
energy balance?

energy transfer over South Pole

\[G = R_N + H_S + H_L \]
monthly means: energy balance? *no.*

energy transfer over South Pole

\[G = R_N + H_S + H_L \]

\[G - R_N = H_S + H_L \]
monthly means: energy balance? no.

energy transfer over South Pole

\[G = R_N + H_S + H_L \]

\[G - R_N = H_S + H_L \]

\(H_S \) magnitude is underestimated by MO theory over South Pole, probably.
monthly means: energy balance? no.

energy transfer over South Pole

\[G = R_N + H_S + H_L \]

\[G - R_N = H_S + H_L \]

\(H_S \) is sensitive to skin-surface temperature derivation (from LUF).
stable boundary layer: solution?

\[G = R_N + H_S + H_L \]

\[G - R_N = H_S + H_L \]
stable boundary layer: energy transfer over South Pole

\[G = R_N + H_S + H_L \]

\[G - R_N = H_S + H_L \]

```
cooling snow
heating snow
```

```
lapse
inversion
```

```
T_2 - T_{sfc} (K)
```

```
horizontal axis: wind speed (m s^{-1})
```

```
vertical axis: H_S + H_L (W m^{-2})
```

```
from thermistors during 2001 (not LUF)
```
energy transfer over South Pole

\[G = R_N + H_S + H_L \]

\[G - R_N = H_S + H_L \]

stable boundary layer: solution? *maybe.*

find empirical relationship between \(G-R_N, T_{inv}, ws, \ldots \)
short time scales: subsurface temperatures
heat transfer in snow pack

A. January (°C)
short time scales: subsurface temperatures

high variability in subsurface temperatures during winter
short time scales: subsurface heating rates

January Monthly MEAN $G = 1 \text{ W m}^{-2}$

large G on short time scales

large heating rates on short time scales

A. January (K day$^{-1}$)
short time scales: subsurface heating rates

heat transfer in snow pack

larger heat fluxes during winter
short time scales:
subsurface vapor pressures
heat transfer in snow pack

subsurface vapor pressures higher during summer

A. January (Pa)
B. March (Pa)
C. July (Pa)
D. November (Pa)
conclusions:

No energy balance. H_S is probably larger in the monthly mean (by 10 W m$^{-2}$) than predicted by MO theory.

May be possible to develop empirical relationship for $H_S + H_L$.

No significant frost deposition at the South Pole.

Snow surface temperatures at the South Pole result in interface heat fluxes of up to 20 W m$^{-2}$ on daily time scales.

Episodic sustained heating rates of greater than 10 K day$^{-1}$ occur in the near-surface snow at South Pole.

Snow temperature gradients and heat fluxes important for depth hoar formation and $\delta^{18}O$ (or δD) fractionation.
acknowledgements:

Ed Waddington of UW for help with the finite-volume model.

Ells Dutton and *Tom Mefford* of NOAA-GMD, and the BSRN for data and advice.

Shelley Knuth and *Matt Lazzara* at the AMRC for data.

Kathie Hill at Raytheon Polar Services for data.

NSF Office of Polar Programs for general support and travel funds.
conclusions:

No energy balance. H_S is probably larger in the monthly mean (by 10 W m$^{-2}$) than predicted by MO theory.

No significant frost deposition at the South Pole.

Snow surface temperatures at the South Pole result in interface heat fluxes of up to 20 W m$^{-2}$ on daily time scales.

Episodic sustained heating rates of up to 3 K day$^{-1}$ occur in the near-surface snow at South Pole.

Heat plumes puncture deeper into the snow during winter than summer.

Snow temperature gradients and heat fluxes important for depth hoar formation and 18O$_2$ fractionation.
monthly means:
prior work on R_N (net radiation)
monthly means:
\(R_N \) (net radiation)

energy transfer over South Pole
\[
G = R_N + H_S + H_L
\]
Monthly means:
\(R_N \) (net radiation)

\[G = R_N + H_S + H_L \]

More interannual variability during Summer likely due to effect of clouds on solar radiation.
monthly means:
G (subsurface heat flux)

energy transfer over South Pole

$G = R_N + H_S + H_L$
monthly means: G (subsurface heat flux)

energy transfer over South Pole

\[G = R_N + H_S + H_L \]
monthly means: prior work on H_S (sensible heat flux)

$G = R_N + H_S + H_L$

energy transfer over South Pole
monthly means:
H_S (sensible heat flux)

energy transfer over South Pole

$G = R_N + H_S + H_L$
monthly means: H_s (sensible heat flux)

energy transfer over South Pole

$$G = R_N + H_s + H_L$$

monthly mean H_s from MO theory is almost always directed toward surface
monthly means:
H_L (latent heat flux)

energy transfer over South Pole

\[G = R_N + H_S + H_L \]
heat transfer model:

finite volumes (Patankar 1982)
variable levels
no accumulation (no advection)
no sources (solar, wind pumping, ...)

boundary conditions:
 top: variable surface T (1-3 min)
 bottom: seasonal T gradient

heat transfer in snow pack

T (°C)

1 cm
2 cm
5 cm
10 cm
6.5 m
50 cm
G Model properties:
Dalrymple et al. (1966)
G Model validation: Carslaw and Jaeger (1959)

Surface set at $-30^\circ C$

Snow pack set at $-40^\circ C$

Bottom set to seasonal heat flux at South Pole
G Model validation:
Carslaw and Jaeger (1959)
Effect of clouds on R_N:

![Graph showing the effect of clouds on R_N. The graph includes data for different periods (1958, 1975-1977, 1994-1999) and locations (LNF 1994-2003). The x-axis represents the months from January to January, and the y-axis represents the net radiation in units of W m^{-2}. Markers with error bars indicate the variability in the data.]