## **Atmospheric Moisture and Cloud Cover Characteristics Forecast by** AMPS

### Ryan L. Fogt and David H. Bromwich

Polar Meteorology Group, Byrd Polar Research Center The Ohio State University Columbus, OH, USA



Byrd Polar Research Center



The Ohio State University



## Outline

### Study period from December 2003 – February 2005

#### Relative humidity at McMurdo and South Pole

- Cloud fraction (CF) at McMurdo, nearby runways, and South Pole
- January 2006
  - Pseudo Satellite Product Skill
- Investigation into sources of model error
  Conclusions

Results from: Fogt, R.L, and D.H. Bromwich, 2007: Atmospheric moisture and cloud cover characteristics forecast by AMPS. *Wea. Forecasting*, provisionally accepted.

# **Relative Humidity Performance**



Both stations show a positive bias that increases up to  $\sim 200$  hPa, the mean height of the tropopause. The correlation ranges from 0.4 – 0.8 and is highest at  $\sim 200$  hPa with another peak at 700 hPa at McMurdo. Skill decreases slightly with forecast hour.

## **Cloud Fraction (CF) Performance**

|                                                                                                                   |        |       |                | Old CF | Algorithm   | New CF Algorithm |             |         |
|-------------------------------------------------------------------------------------------------------------------|--------|-------|----------------|--------|-------------|------------------|-------------|---------|
| location                                                                                                          | season | # obs | mean obs<br>CF | bias   | correlation | bias             | correlation | p-level |
| McMurdo                                                                                                           | summer | 1688  | 0.620          | -0.137 | 0.394       | -0.050           | 0.394       | 0.000   |
| Williams Field                                                                                                    | summer | 1090  | 0.632          | -0.201 | 0.345       | -0.113           | 0.342       | 0.000   |
| Pegasus South                                                                                                     | summer | 419   | 0.698          | -0.136 | 0.364       | -0.021           | 0.369       | 0.000   |
| McMurdo                                                                                                           | fall   | 505   | 0.576          | -0.087 | 0.459       | 0.009            | 0.453       | 0.001   |
| McMurdo                                                                                                           | winter | 445   | 0.358          | 0.028  | 0.419       | 0.105            | 0.389       | 0.013   |
| McMurdo                                                                                                           | spring | 802   | 0.638          | -0.038 | 0.428       | 0.050            | 0.457       | 0.000   |
| South Pole                                                                                                        | summer | 1652  | 0.569          | -0.250 | 0.427       | -0.129           | 0.455       | 0.000   |
| South Pole                                                                                                        | fall   | 851   | 0.449          | 0.048  | 0.506       | 0.178            | 0.428       | 0.000   |
| South Pole                                                                                                        | winter | 663   | 0.416          | -0.092 | 0.481       | 0.071            | 0.468       | 0.000   |
| South Pole                                                                                                        | spring | 765   | 0.595          | -0.128 | 0.566       | -0.002           | 0.534       | 0.000   |
| $CF = \tau = \sum_{i=1}^{toa} (0.1CLWP + 0.0735CIWP) \qquad CF = \tau = \sum_{i=1}^{toa} (0.075CLWP + 0.170CIWP)$ |        |       |                |        |             |                  |             |         |
| sf c old                                                                                                          |        |       |                | new l  |             |                  |             |         |

 Modifying CF algorithm produces a near zero bias in roughly all seasons and for both McMurdo and South Pole

 Correlation does not improve suggesting changes to the cloud liquid water content and / or timing of the clouds is needed to improve CF variability

 Nonetheless, AMPS does a good job predicting overall CF amount using new algorithm

### CF Performance by Forecast Hour, South Pole

 CF performance is highest for clear conditions using old algorithm (solid lines)
 Using new algorithm (dashed lines), the performance for clear is roughly equivalent to overcast conditions, while the decreasing skill with forecast hour for partly cloudy conditions is removed



# Pseudo Satellite Product--Further Testing

 Compared 35 pseudo satellite forecasts against satellite imagery (as at right) during January 2006

 Evaluated forecast skill separately for high (based on CICE) and low (based on CLW) clouds, using 2x2 contingency tables

observations







# Low Clouds in Pseudo Satellite

Product



% = percent correct =(a + d) / 35 \* 100

B = bias = (a + b) / (a + c)

F = false alarm= b / (b + d)

MS = mean skill = the mean of 3 different statistical skill scores. Perfect forecasts receive skill scores of 1, forecasts better than random chance receive positive skill scores and vice-versa.



### High Clouds in Pseudo Satellite Product



% = percent correct =(a + d) / 35 \* 100

B = bias = (a + b) / (a + c)

F = false alarm= b / (b + d)

MS = mean skill = the mean of 3 different statistical skill scores. Perfect forecasts receive skill scores of 1, forecasts better than random chance receive positive skill scores and vice-versa.



### CF vs. Pseudo Satellite Performance

- Why low CF bias, but problems accurately modeling low clouds?
  - Diagnostic CF algorithm (especially new algorithm) is more dependent upon CICE content than CLW
  - Observations at McMurdo and South Pole indicate high clouds dominate total CF
- Low CF correlation is likely a combination of insufficient CLW (supercooled water / mixed phase clouds) in the model and inaccurate timing of cloud movement

## CICE vs. CLW in AMPS



 Mean summer CICE (top) and CLW (bottorn) in AMPS given the 2m relative humidity > 80%

 Model depicts CICE content everywhere, but no CLW in the interior and little over the Ross Ice Shelf

 Observations, however, do indicate the presence of supercooled liquid water in clouds at Pole (mostly in Dec – Jan) as well as on the Antarctic Peninsula (also in summer).

# CICE

### Conclusions

- There is excessive moisture in the model near the tropopause, with relative humidity correlations around 0.4 – 0.6
- AMPS predicts high cloud movement and coverage well, leading to a low bias in the CF, especially with a modified algorithm that gives much more weight to CIWP
- Improvements are needed in the representation of supercooled liquid water / mixed phase clouds in the model in order to better predict low cloud coverage, which will likely improve the CF correlation
- Nonetheless, the prediction of high cloud cover and CF amount in AMPS is above that for other regional mesoscale models