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Surface conditions at SUMMIT are very homogenous, similar to the
Antarctic plateau
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Improvement of the representation of snow properties in the LM
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Important physical processes in snowpack modelling
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Snow microphysis model SNOWPA CK (stF, Lehning et al.

2002)
Snow is treated as a three component system (ice, air,
water), finite element, Lagrangian model

Simulation of snow microphysics:
Intergranular bonding, grain size, dendricity, sphericity

Computation of
heat conductivity, albedo, snow drift, ...
as a function of the snow microphysics

Input:
- meteorological data (T, RH, ff, radiation, clouds)

- initial snow profile

SNOWPACK simulations driven with PARCA
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Comparison LM with radiosondes at Summit 3-12 July 2002
48h forecast runs, day 2 used for comparison
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Height levels: 1: 3 m, 5: 30 m, 10: 90 m, 25: 1900 m.
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Comparison of snow drift parameterizations with
LM/SNOWPACK: SWISS Camp

Snow drift S: mass of snow in the air (suspension and saltation)
Tuly 3 10 12, 2002
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Comparison of snow drift parameterizations with
LM/SNOWPACK: Humboldt
July 3 to 12, 2002
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Conclusions

LM/SNOWPACK

Largest effect for new snow and melting
Snow drift is overestimated by snow drift parameterizations

Full coupling:
better representation of the SBL
decrease in snow drift (data for verification needed)

Computing time (32 node LINUX cluster, 16 CPUs used):
Uncoupled: 2h CPU for 48h forecast
Coupled: 100h CPU for 48h forecast
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