The impact of snow microphysics on the simulation of the ABL and snowdrift over polar ice sheets

Gunther Heinemann, University of Trier, Dept. of Environmental Meteorology
Heike Hebbinghaus, Meteorological Institute, University Bonn, Germany

The IGLOS campaign 2002 at Summit (Greenland)

Investigation of the Greenland boundary Layer Over Summit
Experiment, 29 June - 25 July 2002
Research aircraft "Polar2" based in Kangerlussuaq (West Greenland)

SUMMIT station (3250m)

Surface conditions at SUMMIT are very homogenous, similar to the Antarctic plateau

ETH 50m tower
- Temperature, humidity, wind at 8 levels
- Turbulence at 4 levels
- Incoming and outgoing radiation fluxes at 4 levels

Simulations: non-hydrostatic mesoscale model LM

Improvement of the representation of snow properties in the LM of the German Meteorological Service
Important physical processes in snowpack modelling

Barthel and Lehning (2002)

Snow microphysics model SNOWPACK (SLF, Lehning et al. 2002)

Snow is treated as a three component system (ice, air, water), finite element, Lagrangian model

Simulation of snow microphysics:
- Intergranular bonding, grain size, dendricity, sphericity
- Computation of heat conductivity, albedo, snow drift, ...
- as a function of the snow microphysics

Input:
- meteorological data (T, RH, ff, radiation, clouds)
- initial snow profile

SNOWPACK simulations driven with PARCA

Swiss camp May- Sept. 2002

Lagrangian snow model: every snowfall or hoar frost event creates a new model layer

IGLOS: initial snow profile from Summit, 14 layers

Comparison LM with radiosondes at Summit 3-12 July 2002

48h forecast runs, day 2 used for comparison

28 soundings

Comparison (LM-OBS) with 50m tower at Summit 3-12 July 2002

1h data

Case study 10 July 2002

Kopp = coupled
Snowdrift

Lagrangian saltation model: solves the momentum equations for particles

Snow drift S: mass of snow in the air (suspension and saltation)

Comparison of snow drift parameterizations with LMS/SNOWPACK: SWISS Camp

Snow drift S: mass of snow in the air (suspension and saltation)

Comparison of snow drift parameterizations with LMS/SNOWPACK: Humboldt

Snow drift S

\[\text{Acc} = - \nabla \cdot (\vec{v}_H S) \]

10d accumulation by snow drift (kg/m²)

LM14+SNOWPACK 3-12 July 2002

Hebbinghaus and Heinemann (2006)

Ratio snow drift/sublimation

LM14+SNOWPACK 3-12 July 2002
Conclusions

LM/SNOWPACK

Largest effect for new snow and melting
Snow drift is overestimated by snow drift parameterizations

Full coupling:
better representation of the SBL
decrease in snow drift (data for verification needed)

Computing time (32 node LINUX cluster, 16 CPUs used):
Uncoupled: 2h CPU for 48h forecast
Coupled: 100h CPU for 48h forecast

Publications

Peer reviewed

Non-reviewed