AMPS Update – June 2017

Kevin W. Manning Jordan G. Powers

Mesoscale and Microscale Meteorology Laboratory National Center for Atmospheric Research Boulder, CO

12th Workshop on Antarctic Meteorology and Climate Boulder, CO: 26-28 June 2017

Outline

- Review what is AMPS
- Highlights of what's new this past season
- Future

The Antarctic Mesoscale PredictionAMPSSystem (AMPS)

- Real-time, experimental NWP system serving the needs of forecasters for the U.S. Antarctic Program
- Funded by NSF Office of Polar Programs
- Based on NCAR's Weather Research and Forecasting (WRF) model
 - Using adaptations from OSU/BPCRC Polar WRF
- Twice-daily forecasts since September 2000
- Real-time NWP graphics, text, and GRIB openly available through AMPS web page

THE WEATHER RESEARCH & FORECASTING MODEL

- Community model
 - Large and active community worldwide
 - Week-long summer and winter tutorials
 - Annual WRF Users' Workshop

- Regional focus
 - Short-term, high-resolution (1 -10 km grid spacing) simulations
 - Real-time forecasting (e.g., AMPS)
 - Longer-term, regional climate simulations
- Arctic/Antarctic adaptations
 - Taking advantage of OSU/BPCRC Polar WRF effort
 - Feeding back to WRF community as appropriate

AMPS Grid Configuration

- AMPS runs WRF with five two-way interactive nests
 - 30- and 10-km grids over all of Antarctica and environs
 - 3-hourly output to forecast hour 120
 - 3.3- and 1.1-km grids over areas of particular interest to USAP
 - Hourly output to forecast hour 39
- Two forecasts per day
 - 00Z and 12Z forecast cycles
- Grids initialized from NCEP GFS, with additional WRF Data Assimilation step
 - Hybrid Ensemble/3D-Variational Data Assimilation
 - 30-km lateral boundary conditions from GFS
- Ensemble on 30- and 10-km grids
 - Small ensemble: O(20 members)

http://www2.mmm.ucar.edu/rt/amps

12th Workshop on Antarctic Meteorology and Climate: 26-28 June 2017

http://www2.mmm.ucar.edu/rt/amps

Antarctic WRF Mesoscale Prediction System							
📩 🖻 🛡 🖡 🏠 🄄 🕅 www2.mmm.ucar.edu/rt/amps/			(150%) C S 💩 🖉 🚍				
Forecast Hr Grid / Window 00 h 30 km Animations - Full 4-Panel Scaled	CTIC MESOS GRIB Dir Initial Time 2017061900 0 Go Left Go Right CHC-MCM	CALE PREDICTION SYST rectory Status View Al Product Sfc RH Sfc RH (H20) SLP/Precip Cloud base S Soundings C Tables O PseudoSat Sfc wind Meteograms	EM (AMPS) MPS-Related Links Sea ice				
USAP South Pole (NZSP) (lat, lo Forecast initialized at 2017061900 AMPS 10km domain	n) = (-90., 0.)	AMPS 30-km WRF Fcst, 0 h Relative humidity (w.r.t. Temperature	Init, 00 UTC Mon 19 Jun 17 Yalid, 00 UTC Mon 19 Jun 17 ice) XY= 142.5,385.2 to 155.4,251.9 XY= 142.5,385.2 to 155.4,251.9				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} {\rm Spd} \ {\rm Gust} \ \ {\rm Dir} \ {\rm Grid} \\ ({\rm kts}) ({\rm kts}) ({\rm deg}) ({\rm deg}) \\ ({\rm tts}) \\ ({\rm kts}) ({\rm kts}) ({\rm deg}) ({\rm deg}) \\ ({\rm tts}) \\ \end{array} \\ \begin{array}{c} 9 & 11 & 39 & 39 & -0.3 \\ 14 & 29 & 21 & 21 & -0.02 \\ 14 & 28 & 10 & 10 & -0.00 \\ 15 & 27 & 19 & 19 & -0.2 \\ 15 & 30 & 18 & 18 & -0.02 \\ 15 & 29 & 14 & 14 & -0.01 \\ 14 & 28 & 12 & 12 & -0.01 \\ 16 & 27 & 5 & 5 & 0.01 \\ 15 & 26 & 1 & 1 & 0.01 \\ 15 & 26 & 1 & 1 & 0.01 \\ 13 & 25 & 3 & 3 & 0.01 \\ 13 & 24 & 359 & 359 & 0.02 \\ 11 & 21 & 352 & 352 & 0.03 \\ 10 & 20 & 353 & 353 & 0.03 \\ 10 & 17 & 359 & 359 & 0.02 \\ 11 & 21 & 356 & 356 & 0.03 \\ 11 & 19 & 354 & 354 & 0.04 \\ 9 & 16 & 1 & 1 & 0.02 \\ 8 & 15 & 5 & 5 & 0.02 \\ 7 & 14 & 55 & 55 & -0.02 \\ 7 & 14 & 23 & 23 & 0.00 \\ 8 & 21 & 23 & 23 & 0.00 \\ 8 & 21 & 23 & 23 & 0.00 \\ 11 & 23 & 12 & 12 & 0.01 \\ 12 & 24 & 9 & 9 & 0.01 \\ 12 & 24 & 9 & 9 & 0.01 \\ 12 & 24 & 7 & 8 & 8 & 0.01 \\ 11 & 23 & 16 & 16 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 12 & 24 & 17 & 17 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20 & 0.00 \\ 11 & 23 & 20 & 20$	7 RH1RH2RH3 TIT (% wrt water) TIT (% wrt water) 8 090058066 M55M52 205062063 M51M46 20505063063 M51M46 20505065 M48M42 205005066 M48M42 205005066 M48M42 205005066 M48M42 206005066 M48M42 006006066 M48M42 006006066 M48M42 006006066 M48M42 006006066 M48M42 006006066 M48M42 006006066 M48M40 006006066 M48M40 006006066 M48M40 006006066 M42M39 005006067 M42M39 005006067 M42M39 005006067 M46M41 0061065067 M46M41 0061065067 M46M41 0061065067 M46M41 0060066068 M46M40 0050066068 M46M41 0050066066 M46M41 0050066066 M46M41 0050066066 M46M41 059066066	XY= 142.5.385.2 to 155.4.251.9 Teber Hrbs Teber Hrbs				

http://www2.mmm.ucar.edu/rt/amps

• •			Antarctic WRF Mesoscale	e Prediction System			
🗙 🖻 🛡 🕂 👚 🍝) () www2.mmm.ucar.edu/rt/amps/				(150%) C S 💩 - 🤨 🗄		
THE ANTARCTIC MESOSCALE PREDICTION SYSTEM (AMPS) Products Directory GRIB Directory Status View AMPS-Related Links							
Forecast Hr	Grid / Window	Initial Time		Pro	duct		
00 h ᅌ	10 km	2017061900 📀 🔿 SFC 🔿 Sfc F	RH 🔿 Sfc RH (H20) 🔿 S	SLP/Precip OCloud base O	Sea ice		
Animations		Go Left Upper air	Soundings	Cables			
4-Panel		Go Right Cross sections	OPseudoSat OSfc	wind Meteograms	Experimental Ensemble Products USAP WAIS Divide		
WAIS Divide (V	WSD): lat/lon = (-79.467	6, -112.0859) AMPS WF 2017-06-1	RF Forecast Cycle:	Ensemble time series Static	on: WAIS Divide Lat/Lon = (79.466 S, 112.106 W)		
Grid Point (444, 32)	9) lot/lon = (-79,4486, -112.1 P (nb) 122 002 122 150 200 200	374) 2017001 11 Jun 22 Jun 23 Jun 00z 12Z 00Z 12Z 00Z 16 profile 10 profile 10 profile 10 profile 10 profile 16 profile 10 profile 10 profile 10 profile 10 profile 10 profile 17 profile 10 profile 12 profile 10 profile	24 Jun 12Z 00Z 45.0 40.0 35.0				
Temperature (°C)			25.0 22.5	-500 800.0 			
Cloud/Precip Outline Wind Barbs (kts) (tru		1 6 6 6 6 7 7 7 7 9 9 1 1 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9	20.0 77777 17.5 A	20 770.0 760.0 0 12 2 40.0 0 12 2 21 0 12 12 12 12 12 12 12 12 12 12 12 12 12			
RH > 70% RH > 80% RH > 90%	550 600 650 700 750		12.5 744 12.5 744 7.5 7.5 5.93	9) 30.0 90 20.0 90 20.0 90 20.0 90 20.0 90 0.0 90 50.0 90 50.0 90 60.0 90 15.0 90 15.0	Tussday Wodnesday Thursday Friday		
Wind at 10 m Wind Spd (kts) Wind Barbs (tru Wind Barbs (gri Precip (mm)		1))))))))))))))))))))))))))	800	500 500 500 500 500 500 500 500			
liq, equiv. 3—hr accum Pressure (mb)	2.0 1.5 1.0 0.5 -25		790 780 (mb) 770 760		4 36 48 50 72 84 95 108 120		
Temperature (° Dewpoint (°C)	C) -36 -35 -48 -45 -59 -48 -48 -48 -59 -48 -59			(E 0.040			
Wind Chill T (°C	59 -64 -78 -79 122 00Z 12Z 20 Jun 22	00Z 12Z 00Z 12Z 00Z 11 Jun 22 Jun 23 Ju	12Z 00Z 24 Jun	6 0,000 12 2 19/00 19/12 20 Forecast Cycle: 2017-06-19	4 36 48 60 72 84 96 108 120 00 20/12 21/00 21/12 22/00 22/12 23/00 23/12 24/00 Forecast Lead Time (hours) / Valid Time (DD/HH UTC) / 00 UTC		

12th Workshop on Antarctic Meteorology and Climate: 26-28 June 2017

New this year!

12th Workshop on Antarctic Meteorology and Climate: 26-28 June 2017

Observations from BAS

- Thanks to Steve Colwell (BAS)
- Steve noticed BAS sites missing from our GTS source (Unidata)
 - May need to get Unidata to extract surface BUFR obs?
- Steve created an FTP site for AMPS to pull real-time data from his catalogue of surface reports
- Testing this additional data in AMPS data assimilation resulted in a consistent reduction of forecast surface pressure bias
- Implemented September 2016
- Surface observations now drawn from three sources:
 - GTS (through Unidata)
 - AMRC (thanks to AMRC and AWS crews!)
 - BAS

Field campaign support

- AMPS has traditionally supported various Antarctic field campaigns
 - Customized NWP products
 - As time and resources allow
 - As consistent with AMPS goals and mission

ACE

- Antarctic Circumnavigation Expedition
- Three-month circumnavigation of Antarctica
 - Wide variety of ecological, biological, climatological, meteorological, etc. investigations
- Ship-following AMPS graphics window

PIPERS

- Polynyas, Ice Production, and seasonal Evolution in the Ross Sea
- Two-month expedition of the Nathaniel B. Palmer to the wintertime Ross Sea
- Ship-following AMPS graphics window
- ROSETTA-ICE
 - Lamont-Doherty Earth Observatory study of Ross Ice Shelf
 - AMPS "truly valuable" in decision making to deploy autonomous ocean floats

New computing platform

- Fifth generation of AMPS computing platforms
 - Box (90/30/[10]-km) (Sep 2000)
 - Pegasus (60/20/6.7/3.3-km) (Apr 2005) [dedicated]
 - Bluefire (45/15/5/1.7-km) (Oct 2008) [shared]
 - Erebus (30/10/3.3/1.1) (Jan 2013) [dedicated]
 - CHEYENNE (Jun 2017) [shared]

Slides and images courtesy of NCAR CISL

4032 nodes

145,152 cores -

- AMPS has dedicated highpriority queue on Cheyenne
- Approximately 2.5× computing power available to AMPS

12th Workshop on Antarctic Meteorology and Climate: 26-28 June 2017

- Higher resolution WRF runs
 - Testing 24/8/2.67/0.89 km grids
- Expanded ensemble
 - Test WRF physics options
 - Better hybrid Ensemble/3DVar data assimilation
- Better MPAS
 - Higher resolution 10km mesh over continent
 - Updated release (4.0 \rightarrow 5.1 \rightarrow 5.2)

1.1-km grid

0.89-km grid

1.1-km grid

0.89-km grid

Coming Attractions!

WRF Version 3.9x

- Code update (currently AMPS uses WRFv3.7.1)
 Accumulated bug fixes and improvements
- New physics options
 - Predicted Particle Property (P³) microphysics might be interesting
- New ensemble options
 - Stochastically perturbed parameterization tendencies
 - Adds random perturbation patterns with spatial and temporal coherence to the physics tendencies
 - Promotes ensemble "dispersion", i.e., variation among members
- New "hybrid" vertical coordinate

Slides courtesy of Dave Gill

Schar 2000 m, 20 km Z, 500 m dz, 1 km dx, W_{5h} (m/s)

Terrain Following

Hybrid Coordinate

12th Workshop on Antarctic Meteorology and Climate: 26-28 June 2017

Model for Prediction Across Scales

- MPAS not viewed as replacing WRF
 - In WRF community, or in AMPS
 - AMPS will likely be running WRF for the foreseeable future
 - MPAS runs with the high resolution in AMPS would be prohibitively expensive
- Why MPAS?
 - Global-to-regional mesh refinement greatly reduces lateral boundary and nest boundary interface problems
 - Regional MPAS available soon
 - Development shifting from WRF to MPAS
 - WRF will take advantage of MPAS development
 - E.g., hybrid vertical coordinate
 - "scale-aware" or "scale-insensitive" physics
 - WRF maintained for the long term
 - Model development (particularly physics) at NCAR to stress interoperability among models
 - Global perspective (including polar regions) necessary
 - Possible future WRF one-way nests driven from MPAS

Thank You

