Remote and Autonomous Measurements of Precipitation in Antarctica

Mark W. Seefeldt¹ Scott D. Landolt² and Andrew J. Monaghan²

¹Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado – Boulder

> ²Research Applications Laboratory (RAL) National Center for Atmospheric Research

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Background

- Snow accumulation is the primary mass input to the Antarctic ice sheets
 - Net result of: precipitation, sublimation/vapor deposition, drifting snow, and melt
- Long-term spatiotemporal variability of Antarctic snow accumulation is not well known
 - Results in uncertainty in mass budget estimates of the Antarctic ice sheets
- Precipitation dominates on the continental and regional scales in the understanding of snow accumulation

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Background

- Precipitation has proven to be exceedingly difficult to accurately measure or otherwise estimate in Antarctica
 - Due to the relatively small amount of annual precipitation
 - Difficult to distinguish between falling snow (precipitation) and blowing snow
- The difficulties to measure precipitation are even more complex in remote locations requiring low-power and autonomous measurement systems
- Measurement on the high plateau is even more challenging due to even smaller accumulation and smaller precipitation particles

(not addressed in this project)

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Goals

- Design and install a system to accurately measure precipitation in Antarctica
 - The key is being able to distinguish between falling snow (precipitation) and blowing snow
- Install four Antarctic Precipitation Systems (APSs) in the Ross Island / Ross Ice Shelf region
 - Large variability in annual precipitation across this region
 - Logistical access and convenience of being adjacent to McMurdo Station
- Operate the APSs autonomously and remotely in the Antarctic environment over the entire year

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Science Goals

- What are the differential contributions of falling snow, ice crystals and blowing snow to overall snow accumulation in the Ross Island region?
- How does precipitation accumulation (after removing the impact of blowing snow) vary seasonally and spatially?
- How well does WRF simulate the spatial and seasonal aspects of precipitation accumulation and where should efforts be focused to improve the model?

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Field Observations

- The focus of the field observations is to use a suite of instruments to provide multiple simultaneous observations
- As precipitation is measured using a precipitation gauge, complementary observations will be used to identify if it is blowing or falling snow
- The additional complicating factor is to make the suite of instruments able to be low-power and autonomous for use at remote sites

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Antarctic Precipitation Systems - Instruments

- Primary:
 - Ott Pluvio²
 - Installed inside a Belfort Double Alter (BDA) shield
- Complementary:
 - Laser Disdrometer Ott Parsivel² or Thies Laser Precipitation Monitor
 - Laser Disdrometer ETI Optical Precipitation Detector
 - Campbell Scientific Sonic Ranging Sensor
 - Campbell Scientific CCFC Field Camera
 - Vaisala WAA151 3-cup Anemometer
- Supplementary:
 - Snow Height by GPS Reflectivity

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Antarctic Precipitation Systems - Schedule

- Initial deployment was originally scheduled for November 2016
 - Field work was deferred a year to provide more time to prepare the APS instrumentation
- Initial deployment will not be done in November 2017
- The goal is to get two years of observations
- Maintenance and adjustments will be completed in November 2018
- APS sites will be removed in November 2019
- Two-way communications will allow for real-time monitoring of the observations and adjustments to the measurement algorithms while installed

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Antarctic Precipitation Systems - Locations

- Premier APS Site:
 - Willie Field AWS
- Standard APS Sites
 - Phoenix Runway (AWS)
 - Alexander Tall Tower
 - Elaine AWS

Note: Lorne AWS is being included in the field scheduling as a back-up site should the weather or Twin Otter resources eliminate Elaine.

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Precipitation Gauge

- Ott Pluvio²
 - All-weather weighing precipitation gauge
 - Original Pluvio¹ gauge is used by the NWS in the ASOS
 - Will be installed at an approximate height of 11 feet (3.3 m)

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Precipitation Gauge

- Belfort Double Alter (BDA) Shield
 - The Pluvio² will be installed inside a BDA shield to improve snow collection on windy days
 - The actual shields used in Antarctica will be a slightly different design with modifications for the Antarctic environment

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Instrument Tower

 All other instruments and the datalogger will be installed on a second tower approximately 10 m upwind from the precipitation gauge

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Laser Disdrometer

- Ott Parsivel² or Thies Laser Precipitation Monitor
 - Measures particle size and fall velocities
 - Will be used to detect particle size in an attempt to distinguish between precipitating snow versus blowing snow

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Laser Disdrometer

- ETI Optical Precipitation Detector
 - Measures a count of particles
 - Mounted at a lower height than the Parsivel² / LPM units
 - Will be used to identify when events are occurring

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Sonic Ranging Sensor

- Campbell Scientific SR50A (aka ADG)
 - Measures the snow height immediately beneath the sensor using acoustic signals
 - Will be used to track the accumulation at a given location
 - Includes a temperature sensor

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – 3-Cup Anemometer

- Vaisala WAA151 3-cup Anemometer
 - Measures the wind speed at gauge height
 - Will be used in transfer calculations based on shielding efficiency
 - Will also be used in identifying blowing snow events

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Camera

- Campbell Scientific CCFC Field Camera
 - Provide a visual picture of the conditions during a given event
 - IR LEDs are included for night photos
 - Will also be used to monitor the precipitation gauge and shield conditions

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Datalogger/Comms/Power

- Campbell Scientific CR6 Datalogger
- Iridium (9522B) satellite communications for Tall Tower and Elaine
- Intuicom EB-1 radio Ethernet Bridge for Willie Field and Phoenix
- 3 or 5 W power systems provided by UNAVCO

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Standard Site – Instrument Tower

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Premier Site – Willie Field AWS

- Includes all of the instruments from a standard sites
- Will also include the following:
 - A second precipitation gauge shielded by a Double Fence Intercomparison Reference (DFIR) shield
 - A third precipitation gauge with a BDA shield at the DFIR shield height (~ 6 feet / 2 m)

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Supplementary – Snow Height by GPS

- Christine Larson (CU-Boulder) has developed a methodology that measures snow height over an area using a GPS receiver (Larson et al., 2009; Larson et al., 2015; Larson et al., 2016)
- Measures snow height through multipath observations using interferometry of the dual frequency GPS signals to examine the dominant height that occurs within 5 degree azimuthal bins
- Comparison to an ultrasonic sensor at DYE-2, Greenland:

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Supplementary – Snow Height by GPS

- An installation of a GPS receiver was completed at Alexander Tall Tower during the 2016-17 field season
- Thanks goes to the University of Wisconsin AWS team and UNAVCO for completing this installation

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

APS Supplementary – Snow Height by GPS

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Antarctic Precipitation Systems – Challenges

- Continually battling efforts to keep the system low power
 - Manufacturers have no appreciation of the necessity low power requirements (e.g. laser snow-height sensor)
 - Most all of the instruments include a heating method that will not be able to be used
- Will need to create measurement algorithms to sample for events yet minimize power requirements
- Uncertainty with how the instruments will handle being turned on/off routinely during the Antarctic winter
- Difficulties in designing and developing a suite of instruments for installation in the Antarctic environment

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

Email:

Mark Seefeldt mark.seefeldt@colorado.edu

Scott Landolt landolt@ucar.edu

Acknowledgments:

- Project supported by the National Science Foundation PLR 1543377
- Field and instrument design assistance from the University of Wisconsin AWS project and UNAVCO

12th Workshop on Antarctic Meteorology and Climatology Boulder, CO June 26, 2017

Cooperative Institute for Research in Environmental Sciences

