Development of WRF-ice for Surface Mass Balance Modeling over Antarctic Peninsula

Gian Villamil-Otero, Jing Zhang, Yao Yao 12th Workshop on Antarctic Meteorology and Climate – Boulder, CO 6/26/2017

North Carolina Agricultural and Technical State University

Introduction

- The Antarctic Peninsula (AP) presents rapid environmental changes
- Progress has been made in the use of regional modeling to simulate surface mass changes over ice sheets but focus has been over Greenland ice sheets.
- Adaptations to those models have included treatment of meltwater percolation, retention and refreezing of snow and underlying firn, parameterizations for broadband snow albedo, and snowdrift processes and sublimation.

WRF-ice description

- Implements various ice and snow processes to enhance the default WRF model's ability to simulate the surface mass balance over the ice surface.
- WRF-ice includes
 - Ice Sheet thermodynamics
 - Sea-ice thermodynamics
 - Snow processes
 - Blowing snow
 - Broadband snow albedo parameterization
 - Snow density changes

Model Description

- Ice Sheet (Vionnet et al. 2012)
 - Extends single layer snow model from Noah Land Surface Model (LSM) to multi-layer discretization.
 - The ice sheet is treated as a mixture of snow and ice, changing gradually from pure snow at the surface to pure ice as the bottom of the snow layer depth
 - Includes firn processes such as refreezing and percolation
 - Non-freezing snowmelt is treated as runoff where 13% of liquid water can be stored inside snow through percolation
- Sea ice
 - Based on Zhang and Zhang (2001) thermodynamic sea ice model
 - Single layer of pure snow over sea ice.
 - All snowmelt is treated as runoff flowing into ocean.

Model Description

• Energy balance at the snow surface and layers is defined as:

$$Q_{sfc} = Q_{sfc} \downarrow -G_i \downarrow +F_i^{rfz} = 0$$

where $Q_{sfc} \downarrow$ is the surface heat flux, $G_i \downarrow$ snow layer conductivity, and F_i^{rfz} latent heat released from refreezing. The subscript *i* represent the layer

• Surface heat flux is defined as:

$$Q_{sfc} \downarrow = H_{lat} \downarrow + H_{sen} \downarrow + R_{LW} \downarrow + (1 - \alpha_{sfc})R_{SW} \downarrow -\epsilon_{sfc}R_{sfc} \uparrow$$

- $H_{lat} \downarrow$ is the latent heat flux
- $H_{sen} \downarrow$ the sensible heat flux
- $R_{LW} \downarrow$ the downward long-wave radiation flux
- $R_{SW} \downarrow$ the downward short-wave radiation flux
- R_{sfc} \uparrow the upward long-wave radiation flux
- ϵ_{sfc} the surface emissivity
- α_{sfc} the surface albedo.
- Over sea ice $F_i^{rfz} = 0$.

Model Description

The conductive heat flux of snow is defined as

$$G_i \downarrow = \frac{k_s}{h_{si}} (T_i - T_{ij})$$

- $-k_s$ the thermal conductivity of snow
- h_{si} snow depth of the layer
- T_i temperature of the layer
- T_{ij} temperature of the interface between layers
- At the bottom layer or over sea ice, T_{ij} is equal to the temperature of the underlying ice.
- If the snow surface temperature exceeds the melting point of snow, the temperature of the snow is fixed to the melting temperature of snow, T_s^{mlt} , and the residual snow surface heat flux, ΔQ_{sfc} , is then used for melting,

$$F_{i} = min\left(0, \frac{\Delta t \,\Delta Q_{sfc}[T_{s}^{mlt}]}{\rho_{s}L_{mlt}}\right)$$

- $-\rho_s$ snow density
- L_{mlt} latent heat of fusion

Model Description - Snow

- Snow Processes Blowing Snow (Lenaerts et al. 2012)
 - Incorporates PIEKTUK-D into the PBL section of WRF
 - Blowing snow is present whenever 10m wind speed exceed following threshold:

$$U_t = U_{t0} + 0.0033(T_a + 27.27)^2$$

- Saltation layer is assumed to develop instantaneously thus we specify the saltation blowing snow mixing ratio to be vertically homogenous: $a_1 = 0.385 (1 - U/U)^{2.59} / U$

$$q_{b_{salt}} = 0.385 \left(1 - U_t / U_{10}\right)^{2.59} / u_*$$

- Suspension layer boundaries lies between $z_{lb} = \left[z_r^{-0.544} + \left(ln \frac{q_{b_{salt}}\rho}{\rho_r} \right) / 1.55 \right]^{-1.838} \text{ and } 1000 \text{ m}$

Model Description - Snow

Snow Processes – Blowing Snow (Cont.)

 The model predicts the evolution of blowing snow mixing ratio and the blowing snow number concentration through the following equations

$$\frac{\partial q_b}{\partial t} = \frac{\partial}{\partial z} \left(K_b \frac{\partial q_b}{\partial z} + \nu_b q_b \right) + S_b$$
$$\frac{\partial N}{\partial t} = \frac{\partial}{\partial z} \left(K_N \frac{\partial N}{\partial z} + \nu_N N \right) + S_N$$

- Calculates the rate of change of particle numbers due to sublimation process, S_N

$$S_N = \frac{NS_b}{q_b}$$

Calculates transport rate of blowing snow

$$Q_t = \rho \int_{z_{lb}}^{z_{ub}} \vec{V} q_b dz$$

Model Description - Snow

• Snow Processes- Snow Compaction (Anderson 1976)

$$\frac{1}{\rho_z(z)} \frac{d\rho_z(z)}{dt} = C_1 W_s(z) e^{0.08T_s(z) - C_2 \rho_z(z)}$$

- Snow Processes- Snow Albedo
 - Snow surface albedo parameterization takes into account snow grain size, solar zenith angle, snow impurities, cloud optical depth, and clear sky correction (Gardner and Sharp 2010; Munneke et al. 2011).

$$\alpha = \alpha_s + d\alpha_{\cos\theta_0} + d\alpha_c + d\alpha_\tau + d\alpha_h.$$

$$\alpha_{s} = 1.48 - .127048r_{e}^{0.07}$$

$$d\alpha_{cos\theta_{0}} = 0.53\alpha_{s}(1 - \alpha_{s})(1 - 0.64x - (1 - x)cos\theta_{0})^{1.2}$$

$$d\alpha_{c} = 0$$

$$d\alpha_{\tau} = \frac{0.1\tau\alpha_{s}^{1.3}}{(1 + 1.5\tau)^{\alpha_{s}}}$$

$$d\alpha_{h} = 0.03247\ln\left(\frac{p}{1538.8}\right)$$

$$x = \min(\sqrt{\tau/3cos\theta_{0}}, 1)$$

North Carolina Agricultural and Technical State University

WRF model

- WRF version 3.6.1
- Dimensions
 - 161x141 (50km res)
 - 161x149 (12.5 km res)
 - 49 vertical levels
- Physic Schemes:
 - Microphysics Morrison 2-moment
 - Longwave RRTMG
 - Shortwave RRTMG
 - Sfclay MM5 Similarity
 - Surface Noah LSM + Ice sheet + sea ice+ bsnow
 - Cumulus Kain-Fritsch
 - PBL MYNN + bsnow
- Initialization and forcing with CCSM4 CMIP5 simulation
- Run for the entire month of December 2005

Model testing

• Test sensitivity to blowing snow processes and albedo changes

Experiment	Blowing Snow	Albedo
WRF-ice	On	Gardner and Sharp (2010)
WRF-ice/wout bsnow	Off	Gardner and Sharp (2010)
WRF-ice/const. alb.	On	0.85
WRF-ice/wout bsnow/const. alb.	Off	0.85

• WRF is also ran without any of the modifications (out of the box) for comparison.

Preliminary Results

Sea ice Concentration

Albedo

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

2m Temperature

72°S

74°S

76°S

78°S

34°S

66°S

68°S

70°S

252 254 256 258 260 262 264 266 268 270 272 274

2m Temperature

-1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 1.8

Snow Density

Snow Density

Surface Mass Balance

- $SMB = \int PR RU SU_s SU_{ds} ER_{ds}dt$
 - PR = Precipitation
 - RU = Runoff
 - $-SU_s = Surface Sublimation$
 - $-SU_{ds}$ = Sublimation due to blowing snow
 - ER_{ds} = Erosion due to blowing snow

Precipitation

Runoff

Surface Sublimation

Blowing Snow Erosion

Blowing Snow Sublimation

Surface Mass Balance

Summary

- WRF-ice modules has been successfully implemented into WRF.
- Model runs well for the period tested.
- More sensitivity testing for longer period including different seasons are needed.
- Look for observations to further evaluate model performance.

Appendix

TSK

-1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 1.8

Snowmelt

Snowmelt

Precipitation-Differences

WRF-ice minus WRF-

WRF-ice minus WRF-ice/ constant albedo

Precipitation-Differences

WRF-ice minus WRF-ice/wout blowing snow/constant albedo

WRF-ice minus WRF

Runoff-Differences

WRF-ice minus WRFice/wout blowing snow

WRF-ice minus WRF-ice/ constant albedo

Runoff-Differences

WRF-ice minus WRF-ice/wout blowing snow/constant albedo

WRF-ice minus WRF

Surface Sublimation-Differences

ice/wout blowing snow 55°W 50°W 45°W 40°W 35°W 60°W 40°W 65°W 70°W 50°W 75°W 60°W 80°W 70°W 64°S 66°S 68°S 70°S 72°S 74°S 76°S 78°S Snow SFC Sublimation (mm)

-2 0

-6

2 4

6 8 10

-10 -8

WRF-ice minus WRF-

WRF-ice minus WRF-ice/ constant albedo

Surface Sublimation-Differences

WRF-ice minus WRF

-4 -3 -2 -1 0 1 2 3 4

Erosion - Differences

Blowing Snow Sublimation - Differences

WRF-ice minus WRF-

Surface Mass Balance - Differences

WRF-ice minus WRF-

WRF-ice minus WRF-ice/ constant albedo

Surface Mass Balance - Differences

WRF-ice minus WRF

